Design, Synthesis, and Evaluation of CC-1065 and Duocarmycin Analogs Incorporating the 2,3,10,10a-Tetrahydro-1 H -cyclopropa[d]benzo[f]quinol-5-one (CBQ) Alkylation Subunit: Identification and Structural Origin of Subtle Stereoelectronic Features That Govern Reactivity and Regioselectivity

Dale L. Boger* and Philippe Mesini
Contribution from the Department of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037

Received August 19, 1994^{\otimes}

Abstract

The synthesis of 2,3,10,10a-tetrahydro-1 H -cyclopropa[d]benzo[f]quinol-5-one (10, CBQ), containing a deep-seated structural variation in the CC-1065 and duocarmycin alkylation subunits with incorporation of a ring expanded fused six- versus five-membered ring, and its incorporation into analogs of the natural products are detailed. The approach was based on a key 6 -exo-trig aryl radical-alkene cyclization of $\mathbf{2 2}$ to provide $\mathbf{2 3}$ in which an enol ether acceptor alkene served to reinforce the preferred 6 -exo-trig versus 7 -endo-trig cyclization and directly provided a suitably functionalized 1,2,3,4-tetrahydrobenzo $[f$ fquinoline precursor. Conversion of $\mathbf{2 3}$ to $\mathbf{2 6}$ followed by Winstein Ar- 3^{\prime} alkylation cleanly permitted the introduction of the activated cyclopropane and completed the synthesis of the CBQ nucleus. The evaluation of the CBQ-based agents revealed an exceptional solvolysis reactivity and mixed solvolysis regioselectivity. N-BOC-CBQ ($\left.9, t_{1 / 2}=2.1 \mathrm{~h}, k=9.07 \times 10^{-5} \mathrm{~s}^{-1}, \mathrm{pH} 3\right)$ proved to be $63 \times$ more reactive than N-BOC-CBI ($\left.t_{1 / 2}=133 \mathrm{~h}, k=1.45 \times 10^{-6} \mathrm{~s}^{-1}, \mathrm{pH} 3\right)$ and its solvolysis was found to proceed with cleavage of both the external $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ and internal $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ cyclopropane bonds. The latter was shown to occur with exclusive inversion of stereochemistry illustrating for the first time that the solvolysis and alkylation reactions proceed by $\mathrm{S}_{\mathrm{N}} 2$ versus $\mathrm{S}_{\mathrm{N}} 1$ cyclopropane ring opening upon activation by C 5 carbonyl protonation. A comparison of the X-ray crystal structures of the CPI alkylation subunit taken from (+)-CC-1065, the CBI alkylation subunit, and N-BOC-CBQ (9) provided the structural basis for this altered solvolysis reactivity and regioselectivity. The increased inherent reactivity and the loss of stereoelectronic control for cyclopropane ring opening may be attributed to the idealized alignment and conjugation of the activated cyclopropane with the cyclohexadienone π-system. The fundamental insight derived from the comparisons was not the rapid solvolysis or mixed solvolysis regioselectivity of the CBQ agents, but rather the surprising stability and solvolysis selectivity of the CBI and DSA alkylation subunits. In spite of the apparent structural features that intuitively suggest a high reactivity, the latter agents have proven to be uncharacteristically stable. This unusual stability and the solvolysis regioselectivity are imposed by fusion of the activated cyclopropane to the five-membered ring which constrains it to a nonideal alignment and overlap with the cyclohexadienone π-system. In addition, the in vitro cytotoxic potencies of the CBQ-based agents were found to qualitatively and quantitatively follow the well-established trend where the chemically more stable agents provide the more potent activity.

(+)-CC-1065 (1), ${ }^{1}$ duocarmycin SA (2), ${ }^{2}$ and duocarmycin A (3) ${ }^{3}$ constitute the parent agents of a class ${ }^{1-6}$ of potent antitumor antibiotics that derive their biological properties

[^0]through a sequence selective alkylation of DNA. ${ }^{7-10}$ The characteristic DNA alkylation reaction has been shown to proceed by a reversible, stereoelectronically-controlled adenine N 3 addition to the least substituted carbon of the activated
(7) Warpehoski, M. A.; Hurley, L. H. Chem. Res. Toxicol. 1988, 1, 315. Warpehoski, M. A. In Advances in DNA Sequence Specific Agents; Hurley, L. H., Ed.; JAI Press Inc.: Greenwich, CT, 1992; Vol. 1, p 217.
(8) Hurley, L. H.; Needham-VanDevanter, D. R. Acc. Chem. Res. 1986, 19, 230 . Hurley, L. H.; Draves, P. H. In Molecular Aspects of Anticancer Drug-DNA lnteractions; Neidle, S., Waring, M., Eds.; CRC Press: Ann Arbor, 1993; Vol. 1, p 89.
(9) Coleman, R. S.; Boger, D. L. In Studies in Natural Product Chemistry; Rahman, A.-u.-, Ed.; Elsevier: Amsterdam, 1989; Vol. 3, p 301. Boger, D. L. In Heterocycles in Bioorganic Chemistry, Bergman, J., van der Plas, H. C., Simonyl, M., Eds.; Royal Soc. of Chem.: Cambridge, 1991, p 103. Boger, D. L. In Advances in Heterocyclic Natural Products Synthesis; Pearson, W. H. Ed.; JAI Press: Greenwich, CT, 1992; Vol. 2, 1.
(10) Boger, D. L. Acc. Chem. Res., in press. Boger, D. L. Chemtracts: Org. Chem. 1991, 4, 329. Boger, D. L. in Proc. R. A. Welch Found. Conf. Chem. Res., XXXV., Chem. Frontiers Med. 1991, 35, 137. Boger, D. L. Pure Appl. Chem. 1993, 65, 1123. Boger, D. L. Pure Appl. Chem. 1994, 66, 837.
cyclopropane within selected AT-rich sites of the minor groove. ${ }^{11-16}$ Although the intracellular target for the agents has been shown to be DNA, the mechanism by which DNA alkylation may translate into productive antitumor activity has remained elusive until the recent disclosure that apoptotic cell death is initiated by DNA alkylation in sensitive cell lines. ${ }^{17}$

$(+) \cdot 2$
(+)-duocarmycin SA

$(+)^{-3}$
(+)-duocarmycin A

In recent efforts, the preparation of agents containing deepseated changes in the alkylation subunits has been detailed with the intent of defining the structural features of $\mathbf{1 - 3}$ contributing

[^1]to polynucleotide recognition and functional reactivity. ${ }^{18-23}$ In these studies, the electrophilic cyclopropane proved not to be obligatory to observation of the characteristic alkylation selectivity, and additional electrophiles incorporated into structurally related agents were found to act similarly. ${ }^{19}$ Moreover, the ATrich noncovalent binding selectivity ${ }^{24}$ of the agents has been shown to control the DNA alkylation selectivity independent of the nature of the electrophile. ${ }^{12,14,19,25}$ Several additional fundamental structural features contributing to the properties of $1 \mathbf{1 - 3}$ have been detailed including a direct relationship between solvolysis stability and cytotoxic potency, ${ }^{14,20}$ the structural origin of the distinguishing behavior of the natural and unnatural enantiomers, ${ }^{12,14}$ and the noncovalent binding stabilization of the inherently reversible DNA alkylation reaction ${ }^{13,14}$ and have led to the development of alkylation site models that accommodate the reversed binding orientation and offset AT-rich selectivity of the natural and unnatural enantiomer DNA alkylation reactions. ${ }^{12,14}$

In the course of these studies, the examination of agents incorporating the simplified CBI alkylation subunit have proven especially interesting. ${ }^{20,22}$ Such agents have displayed potent cytotoxic activity and selected agents within the series have displayed efficacious antitumor activity. ${ }^{20}$ Herein, we report the extension of these studies to the preparation and examination of agents incorporating the $2,3,10,10$ a-tetrahydro- 1 H -cyclopropa[d]benzo[$f]$ quinol-5-one (CBQ) ${ }^{23}$ alkylation subunit. The ring expansion of the fused five-membered ring to a sixmembered ring did not diminish the electrophilic reactivity through release of ring strain but resulted in a substantial increase in reactivity and a loss of stereoelectronic control for

[^2]
Scheme 1

9

addition to the activated cyclopropane. Importantly, this examination of the CBQ-based agents and comparison with $1-8$ revealed a fundamental and unappreciated stability for the CC1065 and duocarmycin alkylation subunits. The subtle stereoelectronic and structural origin of this unusual but productive stability and the ramifications of these observations are detailed. In addition, the CBQ-based agents were found to quantitatively follow the well-established relationship between solvolysis stability and cytotoxic potency for this class of agents.

$(+)-4$
(+)-N-BOC-CPI

(+)-5
(+)-N-BOC-DSA

${ }^{(+)-6}$
(+)-N-BOC-DA

$(+)-7$
$(+)-\mathrm{N}-\mathrm{BOC}-\mathrm{CBI}$

Synthesis of N-BOC-CBQ (9) and CBQ (10). The key to the preparation of the CBQ nucleus rested with the implementation of a 6-exo-trig aryl radical-alkene cyclization for construction of the functionalized 1,2,3,4-tetrahydrobenzo[f]quinoline nucleus central to its core structure (Scheme 1). It was anticipated that the cyclization of the precursor enol ether 22 would serve to reinforce the preferred 6 -exo-trig versus 7 -endotrig cyclization available to 22 and directly provide a suitably functionalized 1 -substituted 1,2,3,4-tetrahydrobenzo[f]quinoline for simple conversion to $9-10$. As such, the approach would be complementary to the 5 -exo-dig and self-terminating 5 -exotrig free radical cyclization approaches introduced in our studies on 4, 7-8. ${ }^{18-22}$

Scheme 2

In efforts to determine the viability of the approach to $\mathbf{2 2}$ and which served to confirm that the key 6 -exo-trig free radical cyclization, 2-bromoaniline was converted 11 (Scheme 2). Alkylation of the sodium salt of 11 (1.2 equiv of $\mathrm{NaH}, 25^{\circ} \mathrm{C}$, 15 min) with allyl bromide (1.2 equiv, THF-DMF $5: 1,25^{\circ} \mathrm{C}$, $7 \mathrm{~h}, 96 \%$) followed by hydroboration-oxidation of 12 (1.6 equiv of $9-\mathrm{BBN}, \mathrm{THF}, 25^{\circ} \mathrm{C}, 12 \mathrm{~h} ; \mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}, 76 \%$) provided 13. Mild oxidation ${ }^{26}$ of 13 (1.1 equiv of $\left(\mathrm{COCl}_{2}, 2.2\right.$ equiv of DMSO, 5.5 equiv of $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-60$ to $25^{\circ} \mathrm{C}, 77 \%$) cleanly provided 14. Notably, the alcohol 13 could be isolated and handled without evidence of 6 -membered cyclic carbamate formation derived from reaction of the primary alcohol with the proximal N-BOC protecting group. Attempts to generate 14 directly by alkylation of 11 with acrolein were not successful and, similar to prior observations, ${ }^{18-22}$ attempts to alkylate 11 with less reactive electrophiles including 4-bromo-1-butyne ${ }^{27}$ or 4-[(methanesulfonyl)oxy]-1-butene ${ }^{28}$ were not productive. Treatment of aldehyde 14 with $\mathrm{Ph}_{3} \mathrm{P}=$ CHOTHP ${ }^{29}$ (2.9 equiv) under defined reaction conditions with ylide generation in THF followed by reaction with $\mathbf{1 4}$ over a sustained reaction period (24 h) in THF-HMPA ${ }^{30}$ at $25^{\circ} \mathrm{C}$ cleanly provided 15 (59\%) as a mixture of olefin isomers. β-Elimination derived from deprotonation of the aldehyde was not observed and elimination of the intermediate oxaphosphetane was accelerated with use of HMPA as an added cosolvent. Treatment of 15 with $\mathrm{Bu}_{3}-$ SnH (2 equiv, 0.2 equiv of AIBN, $\mathrm{C}_{6} \mathrm{H}_{6}, 80^{\circ} \mathrm{C}, 12 \mathrm{~h}, 75 \%$) cleanly afforded 16 derived from bromine atom abstraction with aryl radical generation followed by 6 -exo-trig cyclization without evidence of competing generation of the 7 -endo-trig cyclization product. Acid-catalyzed deprotection of 16 (Amberlyst-15, $\mathrm{CH}_{3} \mathrm{OH}, 50^{\circ} \mathrm{C}, 25 \mathrm{~h}, 96 \%$) provided 17.

Without further optimization, the preparation of CBQ was pursued. Alkylation of the sodium salt of N -(tert-butyoxy-

[^3]Scheme 3

Scheme 5

stereometric derivatization, separation, and dederivatization of an advanced intermediate was found to be optimal with 9 itself. N-BOC-CBQ (9) was easily separated in preparatively useful quantities by virtue of an unusually large α value ($\alpha=1.70$, $20 \% i$ - PrOH -hexane) although the enantiomers of the penultimate intermediate 26 were also separable. The assignment of the absolute configuration for 9 was based initially on the relative cytotoxic potencies of natural (-)- and ent- $(+)-N-B O C-$ CBQ with the former exhibiting more potent activity consistent with observations made with 4-7. Ultimately, this was confirmed in a preliminary examination of the DNA alkylation selectivity of the two enantiomers of the advanced analog 36, CBQ-TMI. ${ }^{34}$ Notably, the sign of rotation for the natural and unnatural enantiomers of N-BOC-CBQ as well as that of the advanced analogs CBQ-TMI (36) were found to be opposite that observed with 1-7 and their advanced analogs.

CBQ-TMI (36), CBI-indole 2 (38), CBQ-CDPI ${ }_{1}$, (40), and CBQ-CDPI ${ }_{2}$ (42). The CBQ alkylation subunit was incorporated into the CC-1065 and the duocarmycin analogs as detailed in Scheme 5. Acid-catalyzed deprotection of $\mathbf{2 6}(4 \mathrm{M} \mathrm{HCl}-$ EtOAc, $25^{\circ} \mathrm{C}, 30 \mathrm{~min}$) followed by immediate coupling of the unstable amine hydrochloride salt 28 with 5,6,7-trimethoxyin-dole-2-carboxylic acid ($31,{ }^{13} 3$ equiv of EDCI, DMF, $25^{\circ} \mathrm{C}, 2$

[^4]h, 57%), 32 (3 equiv of EDCI, DMF, $25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 47 \%$), $\mathrm{CDPI}_{1}{ }^{35}$ (33, 4 equiv of EDCI, DMF, $25^{\circ} \mathrm{C}, 12 \mathrm{~h}, 54 \%$), and $\mathrm{CDPI}_{2}{ }^{35}$ (34, 3 equiv of EDCI, DMF, $25^{\circ} \mathrm{C}, 2 \mathrm{~h}$) provided $35,37,39$, and 41 , respectively. Notably, the ease of the couplings of 28 with the carboxylic acids 31-34 diminished as their solubility decreased ($\mathbf{3 1}, \mathbf{3 2}>\mathbf{3 3}>34$) which necessarily slows the rate of reaction. Presumably, this may be attributed to the limited or marginal stability of 28 under the reaction conditions. Nonetheless, 28 proved to be sufficiently effective in its participation in the amide coupling reactions to provide good yields of the expected products. Subsequent treatment of $\mathbf{3 5}$ with NaH (1.1 equiv, THF-DMF $1: 2,25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 72 \%$) provided CBQ-TMI (36) in excellent conversion. However, satisfactory conversions were observed only when the workup of the spirocyclization reaction was conducted with an aqueous phosphate buffer (pH 7) at low temperature $\left(-10^{\circ} \mathrm{C}\right)$ with a minimal amount of excess NaH employed in the reaction. Under these conditions the rapid solvolysis of 36 as well as its adventious hydrolysis to CBQ (10) were minimized. Optically active 35 and 36 were obtained by direct resolution of $\mathbf{3 5}$ on a chiralcel OD semipreparative column and the individual enantiomers of 35 converted to ent-(+)- and natural (-)-CBQ-TMI (36). The assignment of absolute configuration for natural (-)and ent-(+)-CBQ-TMI was based on the relative cytotoxic potency of the two enantiomers with the natural enantiomer being more potent and was confirmed in a preliminary examination of their DNA alkylation selectivities. ${ }^{34}$ Notably, the sign of rotation for the natural (-)- and ent- $(+)$-CBQ-TMI was found to be opposite that observed with the natural products as well as CI- or CBI-TMI.

The ability to effect this cyclization, workup, and purification with the less soluble agents 37 and 39 and the insoluble agent 41 proved both challenging and, in the end, unnecessary. The solubility properties of $37-42$ which requires running the spirocyclization reactions as suspensions in DMF for longer reaction times and conducting the purification with increasingly polar solvents for elution and longer contact times with the chromatography support led to diminished conversions. Since past studies have demonstrated that seco agents such as 35,37 , 39, and 41 exhibit properties indistinguishable from those containing the preformed cyclopropane, our initial examinations of 38, 40, and 42 were conducted with their precursors 37, 39, and 41, respectively. Our comparisons of the analogous CBQ and seco-CBQ pairs 26/9, 29/30, and 35/36 did not reveal significant distinctions between the agents that would merit continued attempts to isolate and separately characterize 38, 40, and 42.

Chemical Solvolysis: Reactivity. Two fundamental characteristics of the alkylation subunits have proven important in the studies of $4-8$ to date. The first is the stereoelectronicallycontrolled acid-catalyzed ring opening of the activated cyclopropane which dictates preferential addition of a nucleophile to the least substituted cyclopropane carbon. The second is the relative rate of acid-catalyzed solvolysis which has been found to accurately reflect the functional reactivity of the agents and to follow a fundamental, direct relationship between solvolysis stability and in vitro cytotoxic potency. ${ }^{10,14,20}$

Ring expansion of the five-membered ring in CBI to the sixmembered ring in CBQ was expected to relieve strain associated with the activated cyclopropane. Provided this modification would not perturb the stereoelectronic effects on the acidcatalyzed ring opening, this structural change was anticipated to enhance the solvolytic stability of the agents and, conse-

[^5] 52, 1521. Boger, D. L.; Coleman, R. S. J. Org. Chem. 1984, 49, 2240.

Figure 1. Solvolysis study (UV spectra) of N-BOC-CBQ (9, top) and CBQ (10, bottom) in $50 \% \mathrm{CH}_{3} \mathrm{OH}-$ aqueous buffer ($\mathrm{pH} 3.0,4: 1: 20$ (v/v/v) 0.1 M citric acid, $0.2 \mathrm{M} \mathrm{NaH}_{2} \mathrm{PO}_{4}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively). The spectra were recorded at regular intervals and only a few are shown for clarity. Top: $1,0 \mathrm{~h} ; 2,0.4 \mathrm{~h} ; 3,0.75 \mathrm{~h} ; 4,1.1 \mathrm{~h} ; 5,1.6 \mathrm{~h} ; 6,2.2 \mathrm{~h}$; $7,3.1 \mathrm{~h} ; 8,5.0 \mathrm{~h} ; 9,69.3 \mathrm{~h}$. Bottom: 1, $0 \mathrm{~h} ; 2,8 \mathrm{~h} ; 3,26 \mathrm{~h} ; 4,52 \mathrm{~h} ;$ $5,67 \mathrm{~h} ; 6,89 \mathrm{~h} ; 7,126 \mathrm{~h} ; 8,169 \mathrm{~h} ; 9,244 \mathrm{~h} ; 10,388 \mathrm{~h} ; 11,642 \mathrm{~h}$.
quently, their biological potency. However, it was not clear whether solvolysis would still occur with cleavage of the $\mathrm{C} 9 \mathrm{~b}-$ C10 bond with addition of a nucleophile to the least substituted C 10 cyclopropane carbon or with cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bond with ring expansion and addition of a nucleophile to C 10 a . Notably, the latter cleavage would place the developing positive charge on a preferred secondary versus primary center and, in preceding agents, this preference was overridden by the inherent stereoelectronic control.
$N-B O C-C B Q\left(9, t_{1 / 2}=2.1 \mathrm{~h}, k=9.07 \times 10^{-5} \mathrm{~s}^{-1}\right.$) proved to be exceptionally reactive toward chemical solvolysis at pH 3 and substantially more reactive than N-BOC-CPI (4, $t_{1 / 2}=$ 36.7 h), N-BOC-CBI ($7, t_{1 / 2}=133 \mathrm{~h}$), N-BOC-DSA (5, $t_{1 / 2}=$ $177 \mathrm{~h})$, and N-BOC-DA ($6, t_{1 / 2}=11 \mathrm{~h}$) but substantially more stable than N-BOC-CI (8, $\left.t_{1 / 2}=0.01 \mathrm{~h}\right)$, Table 1. Thus, N-BOCCBQ exhibits a half-life 63 times shorter than that of the most closely related agent N-BOC-CBI (7) at pH 3 . Even at pH 7 ($1: 1 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{OH}$) where $4-7$ show no evidence of solvolysis when monitored for $1-2$ weeks, N-BOC-CBQ (9) slowly underwent solvolysis ($t_{1 / 2}=544 \mathrm{~h}, k=3.54 \times 10^{-7} \mathrm{~s}^{-1}$) but at a rate slower than that of $8\left(t_{1 / 2}=5.2 \mathrm{~h}, k=3.7 \times 10^{-5} \mathrm{~s}^{-1}\right)$. The solvolysis was followed spectrophotometrically by UV with the disappearance of the long-wavelength absorption band of the CBQ chromophore (318 nM) and with the appearance of a short-wavelength absorption band (243 nm) attributable to seco-N-BOC-CBQ (Figure 1). Like CPI and CBI, CBQ (10, $t_{1 / 2}=$ $91.2 \mathrm{~h}, k=2.11 \times 10^{-6} \mathrm{~s}^{-1}$) proved substantially more stable

Table 1

agent	$\begin{aligned} & k\left(\mathrm{~s}^{-1},\right. \\ & \mathrm{pH} 3)^{a} \end{aligned}$	$\begin{aligned} & t_{1 / 2}(\mathrm{~h}, \\ & \mathrm{pH} 3)^{a} \end{aligned}$	$\begin{gathered} \mathrm{IC}_{50}(\mu \mathrm{M}, \\ \mathrm{L} 1210) \end{gathered}$	$\begin{gathered} \mathrm{UV}, \\ \lambda_{\text {max }} \mathrm{nm}(\epsilon) \end{gathered}$	$\begin{gathered} \mathrm{IR} \\ \left(\mathrm{C}=0, \mathrm{~cm}^{-1}\right) \end{gathered}$
5	1.08×10^{-6}	177	0.006	339 (18000) ${ }^{\text {b }}$	1719, $1610^{\text {c }}$
				301 (14000)	
				255 (10000)	
7	1.45×10^{-6}	133	0.08	300 (19000) ${ }^{\text {d }}$	1718, 1628
				264 (5700)	1602^{e}
4	5.26×10^{-6}	37	0.3	344 (12000) ${ }^{\text {b }}$	1725, 1570 f
				278 (17000)	
6	1.75×10^{-5}	11	1	nd	nd
9	9.07×10^{-5}	2.1	2	314 (19000) ${ }^{\text {b }}$	1705, 1639
				260 (9000)	$1604{ }^{\text {c }}$
				218 (17000)	
8	1.98×10^{-2}	0.01	18	$\begin{aligned} & 294(14000)^{d} \\ & 258(21000) \end{aligned}$	1705, $1617^{\text {c }}$

${ }^{a} \mathrm{pH}=3: 50 \% \mathrm{CH}_{3} \mathrm{OH}$-buffer is 4:1:20 (v:v:v) 0.1 M citric acid, $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and $\mathrm{H}_{2} \mathrm{O}$, respectively. ${ }^{b} \mathrm{CH}_{3} \mathrm{OH} .{ }^{c} \mathrm{KBr}$. ${ }^{d}$ THF. ${ }^{e}$ Film. ${ }^{f}$ Nujol.

Scheme 6

to solvolysis than N-BOC-CBQ (9) and is the result of preferential N^{3}-protonation versus O-protonation that is required for solvolysis catalysis. Nearly identical to the trends exhibited by $4-9$, CBQ (10) proved to be much more reactive than CBI ($\left.t_{1 / 2}=930 \mathrm{~h}, k=2.07 \times 10^{-7} \mathrm{~s}^{-1}\right)^{20}$ and DSA $\left(t_{1 / 2}=2150 \mathrm{~h}\right.$, $\left.k=8.9 \times 10^{-8} \mathrm{~s}^{-1}\right) .{ }^{14}$

Chemical Solvolysis: Regioselectivity and Mechanism. Treatment of N -BOC-CBQ (9) with 0.1 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ in $\mathrm{CH}_{3} \mathrm{OH}\left(25^{\circ} \mathrm{C}, 1 \mathrm{~h}\right)$ resulted in the clean solvolysis (96%) to provide a $62: 38$ (3:2) mixture of 43 and 44 (Scheme 6). No N-BOC deprotection or olefin was observed but the methanolysis proceeded with a loss of regioselectivity. Cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ bond with addition of $\mathrm{CH}_{3} \mathrm{OH}$ to the least substituted C 10 cyclopropane carbon as well as cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bond with ring expansion and addition of $\mathrm{CH}_{3} \mathrm{OH}$ to C 10 a were observed with the former predominating slightly.

Similarly, treatment of CBQ-TMI (36) with anhydrous HCl (2 equiv, $-78^{\circ} \mathrm{C}, \mathrm{THF}, 2 \mathrm{~min}$) resulted in immediate reaction to provide a $57: 43$ (3:2) mixture of 35 and $\mathbf{4 5}$ with the former predominating slightly (Scheme VI). Nucleophilic addition of chloride to the least substituted cyclopropane carbon of 36 with normal cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ bond provided seco-CBQTMI 35 while 45 is derived from cleavage of the C9b-C10a bond with ring expansion. Similar treatment of N -acetyl-CBQ (30) with anhydrous HCl under less controlled conditions (20
equiv of $\mathrm{HCl}, 0.03 \mathrm{M} \mathrm{THF},-78^{\circ} \mathrm{C}, 5 \mathrm{~min}$) provided a $3: 2$ mixture of 29 and 46 (Scheme 6). Consequently, the acidcatalyzed additions occur with a loss of regioselectivity to provide two products with the normal products 43,35 , and 29 predominating slightly. Aside from the identification ${ }^{3-6}$ of duocarmycins C_{1} and B_{1} which have been shown to constitute minor products derived from the reactive duocarmycin A, this represented the first observation of a significant and competitive amount of the ring expansion solvolysis product derived from cleavage of the internal cyclopropane bond. ${ }^{23}$ More recently, the detection of minor amounts of the ring expansion product from CPI derivatives has been reported to occur under selected reaction conditions (cat. $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ but not HCl). ${ }^{36}$

In an effort which determined the mechanistic course of the reaction, both racemic and optically active (+)-9 (unnatural configuration) were subjected to acid-catalyzed methanolysis (0.1 equiv of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{3} \mathrm{OH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}$) to provide mixtures of 43 and 44. Resolution on a Daicel chiralcel OD HPLC column separated both enantiomers of the two reaction products. The product derived from optically active (+)-9 provided exclusively one enantiomer of each of the products 43 and 44 (Figure 2). Although the generation of one enantiomer of 43 would be consistent with either a $\mathrm{S}_{\mathrm{N}} 1$ or $\mathrm{S}_{\mathrm{N}} 2$ ring opening reaction, the generation of a single enantiomer of 44 unambiguously illustrates for the first time that the cleavage of the internal cyclopropane bond does not proceed with generation of a free carbocation ($\mathrm{S}_{\mathrm{N}} 1$) but rather with clean inversion of the reaction center stereochemistry in a $\mathrm{S}_{\mathrm{N}} 2$ ring opening reaction. These unambiguous results are in sharp contrast to the conclusions reached in the recent study ${ }^{36}$ of the CPI solvolysis where a free carbocation has been invoked to explain the appearance of the minor ring expansion products.

X-ray Structure of N-BOC-CBQ (9): Fundamental Structural Correlations with Solvolysis Reactivity and Regioselectivity. Identification and Structural Origin of an Unappreciated but Productive Functional Stability for the CC-1065 and Duocarmycin Alkylation Subunits. The singlecrystal X-ray crystal structure determination of N-BOC-CBQ (9) ${ }^{37}$ was conducted in expectations that it would provide structural insights into the CBQ solvolysis reactivity and regioselectivity. For the CPI subunit taken from the X-ray structure of CC-1065 ${ }^{1}$ and the X-ray structure of the CBI subunit itself, ${ }^{20 e}$ the bent orbital ${ }^{38}$ of the cyclopropane bond extending to the least substituted carbon is nearly perpendicular to the plane of the cyclohexadienone and consequently overlaps ${ }^{39}$ nicely with the developing π-system of the solvolysis product phenol, Figures 3 and 4. This is almost ideally optimized with the CBI nucleus. In contrast, the cyclopropane bond extending to the tertiary carbon is nearly in the plane of the cyclohexadienone and its orbital is nearly orthogonal to the π-system of the product phenol. Thus, opening of the cyclopropane occurs under stereoelectronic control with preferential addition of a nucleophile to the least substituted carbon and the stereoelectronic control overrides the intrinsic electronic preference for ring expansion ring opening.

[^6]

Figure 2. Chiral phase HPLC separation of the products 43 and 44 of acid-catalyzed addition of $\mathrm{CH}_{3} \mathrm{OH}$ to racemic 9 (top) and (+)-9 (bottom). Chiralcel OD HPLC column ($10 \mu \mathrm{~m}, 0.46 \times 25 \mathrm{~cm}$), 1% i - PrOH -hexane, $2 \mathrm{~mL} / \mathrm{min}$.
In contrast, the N-BOC-CBQ X-ray structure exhibits different characteristics. The six-membered ring adopts a boat conformation and the cyclopropane is ideally conjugated ${ }^{39}$ with the π-system. The plane defined by the cyclohexadienone of 9 perfectly bisects the cyclopropane and the bonds extending to both the secondary and tertiary cyclopropane carbons are equally aligned with the π-system. This is highlighted in Figure 3 and also in the model projections represented in Figure 4. This idealized conjugation ${ }^{39}$ of the cyclopropane with the cyclohexadienone π-system results in equal alignment of both the $\mathrm{C} 9 \mathrm{~b}-$ C 10 and $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ cyclopropane bonds for cleavage consistent with the observation that both are observed. Moreover, the solvolysis proceeds nearly equally well for cleavage of both the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ and the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bonds with the former predominating slightly. Given an inherent preference for charge localization on a secondary versus primary center, one might have anticipated that the cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bond would now predominate. However, the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ bond is weaker than

CPI

CBI

CBa

Figure 3. Top: ORTEP of the X-ray crystal structure of N-BOCCBQ (9). Bottom: End on (left) and $30-45^{\circ}$ rotation views (right) of the X-ray crystal structures of CPI (taken from CC-1065 ${ }^{1}$), CBI, ${ }^{20 e}$ and N-BOC-CBQ. The end on view (left) highlights the perfect geometrical alignment and overlap of the CBQ cyclopropane versus the nonideal alignment of the CPI/CBI cyclopropane with the cyclohexadienone π-system. The $30-45^{\circ}$ rotation views (right) illustrated the ideal bisection of the CBQ-activated cyclopropane by the plane of cyclohexadienone π-system (ideal overlap) versus the CPI/CBI unsymmetrical overlap with leads to stereoelectronic control of the solvolysis/ alkylation.
the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bond judging from the X -ray bond lengths (1.543 versus $1.528 \AA$) suggesting that any inherent electronic preference for cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ bond is balanced or offset by this lower bond strength of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{Cl} 10$ bond. Importantly, the slightly predominant cleavage corresponds to that of the weakest (longer) bond. In addition, nucleophilic attack at the sterically more hindered tertiary C10a center must overcome the torsional strain encountered by an incoming nucleophile which must eclipse the equatorial H located on the adjacent Cl carbon while attack at the secondary C10 center is free of such developing torsional strain. Given the observation that ring opening occurs with clean inversion of stereochemistry without intervention of a free carbocation, this developing torsional strain accompanying ring expansion may be especially significant. These combined features result in a slight preference ($1: 1$ to 3:2) for cleavage of the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10$ bond. Thus, the geometrical constraints of the fused five-membered ring found in the CPI, CBI, and DSA alkylation subunits impose the stereoelectronic control dictating preferential nucleophilic attack on the least substituted carbon. With the fused six-membered ring found in CBQ, both of the available cyclopropane bonds are equally aligned for cleavage and cleavage of both are experimentally observed to occur at near competitive rates.
More surprising than the mixed solvolysis regioselectivity of N-BOC-CBQ was the observation of its unusually rapid solvolysis and important insights into the origin of this enhanced reactivity are found in the X-ray structures. The CBQ bond lengths of both the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ ($1.528 \AA$) and $\mathrm{C} 9 \mathrm{~b}-\mathrm{Cl} 0$ (1.543

${ }^{\text {cel }}$

CBO

CBQ

Figure 4. Stick models of the side view, 45° rotation view, and 90° rotation view of the activated cyclopropane of CBI and CBQ illustrating data taken from the X -ray crystal structures and highlighting the idealized overlap and alignment of the CBQ cyclopropane with the cyclohexadienone π-system.
\AA) bonds are longer than those in CBI (1.508 and $1.532 \AA$, respectively) and nicely reflect the enhanced reactivity. ${ }^{39-41}$ This lengthening of the cyclopropane bonds occurs despite the decrease in strain that accompanies fusion to a six versus five membered ring and may be attributed to the idealized conjugation ${ }^{39}$ or π-delocalization of both the $\mathrm{C} 9 \mathrm{~b}-\mathrm{C} 10 \mathrm{a}$ and $\mathrm{C} 9 \mathrm{~b}-$ C10 cyclopropane bonds with the cyclohexadienone π-system. Experimental evidence illustrating this increased conjugation was found in the UV spectra of 9 and 7. The long-wavelength UV absorption bands of 9 and 7 are found at 314 and 300 nm , respectively, with 9 exhibiting the greater degree of conjugation. Similarly, the CBQ (10) and CBI long-wavelength UV absorption bands are found at 326 and 316 nm , respectively, reflecting the greater degree of conjugation for $\mathbf{1 0}$. Contributing to this enhanced conjugation is the perfect geometrical alignment of C10 and C10a with C9b, C5, and the carbonyl oxygen. For CPI and CBI, the constraints of the fused five-membered ring place C9 and C9a at a 20° (CBI) to $25^{\circ}(\mathrm{CPI})$ angle offset from this plane and prevent ideal alignment and overlap of either the $\mathrm{C} 8 \mathrm{~b}-\mathrm{C} 9 \mathrm{a}$ or $\mathrm{C} 8 \mathrm{~b}-\mathrm{C} 9$ bond with the cyclohexadienone

[^7]π-system. This idealized CBQ cyclopropane conjugation with the cyclohexadienone π-system results in the observed longer bond lengths, ${ }^{39}$ weaker bond strengths, and greater reactivity, ${ }^{40,41}$
Thus, the geometrical constraints of the fused five-membered ring found in the alkylation subunits of CC-1065 and the duocarmycins impose the stereoelectronic control on the nucleophilic cleavage of the cyclopropane dictating preferential addition to the least substituted carbon. In addition, the nonideal conjugation and alignment of the cyclopropane with the cyclohexadienone π-system found in CPI, CBI, or DSA results in productively diminished electrophilic reactivity. Contrary to initial expectations, the introduction of the CBQ fused sixversus five-membered ring did not diminish the reactivity of the agent through release of strain, but rather increased its reactivity. This may be attributed to the ideal conjugation and alignment of the cyclopropane with the cyclohexadienone π-system which also results in a loss of stereoelectronic control for its cleavage. Thus, the fundamental insight to be derived from these comparisons is not the rapid solvolysis of the CBQ agents, but rather the surprising stability of the CBI, CPI, and DSA alkylation subunits. In spite of the structural features that intuitively suggest a high reactivity, the latter agents have proven to be uncharacteristically stable. This unusual stability is imposed by fusion of the activated cyclopropane to the fivemembered ring which constrains it to a nonideal conjugation and alignment with the cyclohexadienone π-system.

Structure versus Reactivity: Additional Features. This is not to say that there are not additional structural features of $4-9$ that contribute to their stability. The enhanced stability of 4,5 , and $7>6>8$ can be attributed to the diminished gain in delocalization energy that accompanies aromatization in a system that bears a fused aromatic ring. The increased relative stability of $5>4$ and $6>8$ can be attributed to the conjugated electron-withdrawing group which diminishes C4 carbonyl protonation required of solvolysis and alkylation. The increased relative stability of $7>4$ can be attributed in part to the release of strain that accompanies the substitution of a fused sixmembered for a fused five-membered aromatic ring. ${ }^{20}$ Finally, and certainly important, the vinylogous amide stabilization of the cyclohexadienone structure which is lost upon aromatization contributes significantly to the stability of 4-9.22b

In Vitro Cytotoxic Activity. Despite the differences in the CBQ solvolysis regioselectivity, the in vitro cytotoxic activity of the agents proved to be surprisingly consistent with past observations that have illustrated a direct correlation between solvolysis stability and cytotoxic potency. ${ }^{10,14,20}$ Consistent with their relative reactivity, the CBQ-based agents exhibited cytotoxic activity that was less potent than the corresponding duocarmycin A based agents but more potent than the corresponding CI-based agents, Table 2.

Moreover, the agents were found to follow the previously established relationships between solvolysis stability $(-\log k$, pH 3) and cytotoxic potency ($1 / \mathrm{log} \mathrm{IC}_{50}, \mathrm{~L} 1210$) where the chemically more stable agents within a given class exhibit the greatest potency (Figure 5). A second-order polynominal plot indicative of a parabolic relationship provided an excellent correlation between the solvolytic stability of the agents and their in vitro cytotoxic activity and would be consistent with the expectation that the agents should exhibit an optimum balance of reactivity-stability/activity but that this has not yet been achieved within the series of agents examined to date. Alternative linear plots suggest that either the potencies for the CI-based agents have been overestimated in the cell culture assays or that the potencies of the CBQ-based agents are lower than would have been predicted by a linear relationship. Both

Table 2. In Vitro Cytotoxic Activity ${ }^{a}$

agent	configuration	$\mathrm{IC}_{50}(\mathrm{~L} 1210)$
$\mathbf{9}(\pm)-N$-BOC-CBQ	racemic	$3 \mu \mathrm{M}$
$\mathbf{9},(-)-N$-BOC-CBQ	natural	$2 \mu \mathrm{M}$
$\mathbf{9},(+)-N$-BOC-CBQ	unnatural	$11 \mu \mathrm{M}$
$\mathbf{2 6}$	racemic	$3 \mu \mathrm{M}$
$\mathbf{1 0},(\pm)-\mathrm{CBQ}$	racemic	$>50 \mu \mathrm{M}$
$\mathbf{2 9}$	racemic	$2 \mu \mathrm{M}$
$\mathbf{3 0},(\pm)-N$-acetyl-CBQ	racemic	$2 \mu \mathrm{M}$
$\mathbf{3 5}$	racemic	4000 pM
$\mathbf{3 5}$	natural	4000 pM
$\mathbf{3 5}$	unnatural	35000 pM
$\mathbf{3 6},(\pm) \mathrm{CBQ}-\mathrm{TMI}$	racemic	4000 pM
$\mathbf{3 6},(-)$-CBQ-TMI	natural	4000 pM
$\mathbf{3 6},(+)-\mathrm{CBQ}-\mathrm{TMI}$	unnatural	35000 pM
$\mathbf{3 7}$	racemic	4000 pM
$\mathbf{3 9}$	racemic	2000 pM
$\mathbf{4 1}$	racemic	3000 pM

${ }^{a}$ The in vitro cytotoxic assays were conducted as detailed in ref 20 .
are reasonable possibilities with the former being the result of the difficulties in accurately assessing the activity of the exceptionally reactive CI-based agents while the latter would be the result of the lost and altered solvolysis regioselectivity of the CBQ-based agents which might further lower their inherent cytotoxic potency. If either the data for the reactive CI-based or CBQ-based agents are not included, the linear relationships become more accurate. What is unmistakable from these comparisons is the accurate qualitative trend of the chemically more stable agents providing the greater in vitro cytotoxic activities and higher DNA alkylation efficiencies. Whether this relationship is best represented as a well-defined second-order polynomial and parabolic relationship with inclusion of all classes of agents studied to date (Figure 5) or as a well-defined linear relationship with either the CI- or CBQbased agents presenting an easily rationalized quantitative deviation from the linear relationship will become clearer in the comparative examination of future agents. What is clear is that the qualitative trends are accurate for all five classes of agents presently available for examination.

Presumably, this may be attributed to the more effective delivery of the more stable agents to their intracellular target. In this respect, the relative solvolysis rates of the agents represent an accurate measure of their relative functional reactivity. The nonproductive competitive consumption of the agents in route to their biological target need not be simply solvolysis but competitive alkylation of alternative sites as well including nonproductive sites within DNA. Since the chemically more stable agents also provide the most easily reversed alkylation reactions, the observations may also represent the more effective partitioning of the agents to their intracellular target.

In the two instances examined, the natural CBQ enantiomer generally was found to be more potent than the unnatural enantiomer. Similar to past observations with the more sterically hindered agents possessing steric bulk surrounding the CBQ C9 or CBI C8 center, both the natural enantiomer of 9 (5$10 x)$ and the natural enantiomers of $35 / 36(10-100 x)$ exhibited the more potent cytotoxic activities. These and related properties of the agents are under further investigation including a detailed examination of the DNA alkylation properties ${ }^{34}$ of the CBQ-based agents and the results of such studies will be disclosed in due course.

Experimental Section

2-[N-Allyl- N-(tert-butyloxycarbonyl)amino]-4-(benzyloxy)-1-bromonaphthalene (19). The carbamate $18^{20 \mathrm{j}}$ ($403 \mathrm{mg}, 0.94 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ to a suspension of $\mathrm{NaH}(60 \%$ in oil, $45 \mathrm{mg}, 1.13 \mathrm{mmol}$,

Figure 5.
1.2 equiv) in THF (20 mL). The resulting mixture was stirred for 15 \min at $25^{\circ} \mathrm{C}$ and recooled at $0^{\circ} \mathrm{C}$. DMF (2 mL) and allyl bromide $(120 \mu \mathrm{~L}, 1.41 \mathrm{mmol}, 1.5$ equiv) were added and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$ and at $25^{\circ} \mathrm{C}$ until completion (4 h). Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($2 \times 50 \mathrm{~mL}$). The combined organic layer was dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}) and the solvent evaporated under vacuum. Chromatography $\left(\mathrm{SiO}_{2}\right.$, $2.5 \times 15 \mathrm{~cm}, 10 \% \mathrm{EtOAc}$-hexane) afforded 19 ($435 \mathrm{mg}, 441 \mathrm{mg}$ theoretical, 98%) as a white solid: mp $89.5-90^{\circ} \mathrm{C}$ (hexane, prisms); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 8.27$ $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}), 7.6-7.3(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, \mathrm{C} 7-\mathrm{H}$, and $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 6.78 and 6.67 (two s, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$), $5.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.30-5.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 5.11-5.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right), 4.59-$ $4.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHH}), 4.02-3.87(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHH}), 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OC}-$ $\left.\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.2$ and $153.9(\mathrm{CO}), 138.8$, $136.5,134.0,133.7,132.8,128.7,128.2,127.6,127.3,126.2,125.8$, $122.5,117.9,117.4,114.7,108.1$ and $107.8(\mathrm{C} 3), 80.4,70.4,53.3$ and $50.0\left(\mathrm{NCH}_{2}\right), 28.5$ and $28.3\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; $\mathbb{R}(\mathrm{KBr}) \nu_{\max } 3068,2976,2912$, $1700,1687,1620,1594,1569,1507,1500,1448,1388,1382,1328$,
$1253,1240,1162,1143 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 468.1189(\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrNO}_{3}$ requires 468.1174).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrNO}_{3}: \mathrm{C}, 64.11 ; \mathrm{H}, 5.60 ; \mathrm{N}, 2.99$. Found: C, 63.91; H, 5.66; N, 3.05 .

2-[N-(tert-Butyloxycarbonyl)- N-(3-hydroxyprop-1-yl)amino]-4-(benzyloxy)-1-bromonaphthalene (20). A solution of 19 ($1.55 \mathrm{~g}, 3.3$ mmol) in THF (5 mL) under Ar was treated with 9.90 mL of a $9-\mathrm{BBN}$ solution in THF ($0.5 \mathrm{M}, 4.95 \mathrm{mmol}, 1.5$ equiv) and the mixture was stirred for 16 h at $25^{\circ} \mathrm{C}$. The resulting mixture was diluted with THF $(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}\left(3 \mathrm{~mL}, 50\right.$ equiv) was added slowly at $0^{\circ} \mathrm{C}$, and the mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 30 min . 3 N Aqueous $\mathrm{NaOH}\left(2.5 \mathrm{~mL}, 7.5 \mathrm{mmol}, 2.3\right.$ equiv) and 50% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(1.34 \mathrm{~g}$, $19.7 \mathrm{mmol}, 6$ equiv) were added at $0^{\circ} \mathrm{C}$ and the resulting mixture was stirred at $25^{\circ} \mathrm{C}(1 \mathrm{~h})$ and at $60^{\circ} \mathrm{C}(1 \mathrm{~h})$. The cooled reaction mixture was extracted with EtOAc $(2 \times 50 \mathrm{~mL})$, the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and the solvent was removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 3 \times 15 \mathrm{~cm}, 30-50 \% \mathrm{EtOAc}-\right.$ hexane gradient elution) afforded $20(1.29 \mathrm{~g}, 1.60 \mathrm{~g}$ theoretical, $80 \%)$ as a white solid: mp $109-111^{\circ} \mathrm{C}$ (EtOAc-hexane, prisms); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.36(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C} 5-\mathrm{H}), 8.28(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H})$, $7.63(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 7.55(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 7.50-7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$, 6.61 (s, 1H, C3-H), 5.29 (d, 1H, $\left.J=12.1 \mathrm{~Hz}, \mathrm{CHHC}_{6} \mathrm{H}_{5}\right), 5.23(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=12.1 \mathrm{~Hz}, \mathrm{CH}_{6} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHH}), 3.79(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHOH})$, 3.67 (m, 1H, CHHOH), 3.57 (td, 1H, $J=5.6,14.7 \mathrm{~Hz}, \mathrm{NCHH}$), 3.49 $(\mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 1.71-1.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 1.30\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;$ ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,154.1,138.6,136.3,132.6,128.7$, $128.24,128.16,127.5,127.1,126.2,125.8,122.4,114.3,107.4,80.8$, $70.4,59.0,45.7,30.9,28.4$ and $28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 3477$, 3070, 2950, 1686, 1664, 1619, 1594, 1568, 1540, 1504, 1335, 1155, $1145,1092 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/e $618.0266\left(\mathrm{M}+\mathrm{Cs}^{+}\right.$, $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrNO}_{4}$ requires 618.0256).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{BrNO}_{4}$: $\mathrm{C}, 61.73 ; \mathrm{H}, 5.80 ; \mathrm{N}, 2.89$. Found: C, 61.88; H, 5.89; N, 2.96.

2-[N-tert-Butyloxycarbonyl)- N-(3-oxo-1-propyl)amino]-4-(benyloxy)-1-bromonaphthalene (21). A solution of DMSO (0.79 $\mathrm{mL}, 11.2 \mathrm{mmol}, 2.4$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added dropwise to a solution of $(\mathrm{COCl})_{2}\left(0.48 \mathrm{~mL}, 5.5 \mathrm{mmol}, 1.2\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL) at $-60^{\circ} \mathrm{C}$. The reaction mixture was stirred for 2 min and the alcohol $20(2.25 \mathrm{~g}, 4.62 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added within 5 min . The mixture was stirred for an additional 15 min before $\mathrm{Et}_{3} \mathrm{~N}$ ($3.25 \mathrm{~mL}, 23.3 \mathrm{mmol}, 5.0$ equiv) was added. After 5 min , the reaction mixture was allowed to warm at $25^{\circ} \mathrm{C}$. Water (100 mL) was added and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed under vacuum. Chromatography ($\mathrm{SiO}_{2}, 5 \times 15 \mathrm{~cm}, 25 \%$ EtOAc -hexane) afforded $21(2.03 \mathrm{~g}, 2.24 \mathrm{~g}$ theoretical, 90%) as a white solid: mp $81-82^{\circ} \mathrm{C}$ (EtOAc-hexane, prisms); ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.76(\mathrm{t}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{CHO}), 8.37(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}, \mathrm{C} 5-\mathrm{H}), 8.28$ (d, $1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}), 8.65$ (m, $1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 7.58-$ $7.35\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} 6-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.77$ and 6.70 (two s, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$), $5.28\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 4.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHH}), 3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCHH})$, $2.80-2.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CHO}\right), 1.57$ and 1.56 (two s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.9$ and 200.5 (CHO), 154.6 and $154.1\left(\mathrm{CO}_{2}\right), 138.3,136.2,132.7,128.6,128.2,128.1,127.4,127.3$, $126.3,126.0$ and $125.8,122.4,114.4,107.5,81.3$ and $80.6\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right)}\right)$, $70.3,44.0,43.2,42.8,28.4$ and $28.1\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR $(\mathrm{KBr}) \nu_{\max } 2980$, $2722,1722,1694,1619,1594,1506,1388,1337,1157,1143,1097$ cm^{-1}; FABHRMS (NBA-CsI) $m / e 616.0104\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrNO}_{4}\right.$ requires 616.0099).

Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{BrNO}_{4}$: C, $61.99 ; \mathrm{H}, 5.41 ; \mathrm{N}, 2.89$. Found: C, 62.08; H, 5.71; N, 2.96 .

2-[\boldsymbol{N}-(tert-Butyloxycarbonyl)- \boldsymbol{N}-[4-(tetrahydropyranyloxy)-3-buten-1-yl]amino]-4-(benzyloxy)-1-bromonaphthalene (22). A suspension of triphenyl[(2-tetrahydropyranyloxy)methyl]phosphonium chloride ${ }^{29}$ $\left(8.85 \mathrm{~g}, 21.4 \mathrm{mmol}, 3.0\right.$ equiv) in 70 mL of THF at $-78^{\circ} \mathrm{C}$ was treated dropwise with a solution of $n-\mathrm{BuLi}(9 \mathrm{~mL}, 2.3 \mathrm{M}$ in hexane, 20.7 mmol , 2.9 equiv). The reaction mixture was stirred for 5 min at $-78^{\circ} \mathrm{C}$, the cooling bath was removed and the mixture was stirred and allowed to warm until it reached $0^{\circ} \mathrm{C}$. The mixture was recooled to $-78^{\circ} \mathrm{C}$, and HMPA ($30 \mathrm{~mL}, 24$ equiv) and 21 ($3.46 \mathrm{~g}, 7.14 \mathrm{mmol}$) in THF (35 mL) were added sequentially. The reaction mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ and 24 h at $25^{\circ} \mathrm{C}$ before it was quenched by the
addition of 500 mL of phosphate buffer $(\mathrm{pH}=7)$. The mixture was extracted with EtOAc $(3 \times 200 \mathrm{~mL})$, and the combined organic phase was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}\right.$, $5 \times 20 \mathrm{~cm}, 15 \% \mathrm{EtOAc}$-hexane containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$) afforded 22 $(3.58 \mathrm{~g}, 4.16 \mathrm{~g}$ theoretical, 86%) as a colorless oil as a mixture of E and Z-olefin isomers ($60: 40$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) E - and Z-olefin isomers, amide rotamers $\delta 8.36-8.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and C 8 $\mathrm{H}), 7.64-7.34\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{C} 6-\mathrm{H}, \mathrm{C} 7-\mathrm{H}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.91-6.74(\mathrm{~m}$, $\mathrm{C} 3-\mathrm{H}$), 6.29-6.24 and 6.18-6.15 (two $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHO}$), $5.28-5.15$ (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), $5.05-4.95$ and $4.49-4.43$ (two $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHO}$), $4.88-4.80(\mathrm{~m}, \mathrm{OCHO}), 4.00-3.32\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right.$ and $\left.\mathrm{OCH}_{2}\right), 2.50-$ $2.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}\right), 1.86-1.30(\mathrm{~m}, 15 \mathrm{H}) ; \mathrm{IR}\left(\mathrm{CCl}_{4}\right) \nu_{\max } 2944$, $1705,1674,1620,1593,1568,1503,1343,1160 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA-CsI) $m / e 714.0839\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{31} \mathrm{H}_{36} \mathrm{BrNO}_{5}\right.$ requires 714.0831).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{BrNO}_{5}$: $\mathrm{C}, 63.92 ; \mathrm{H}, 6.23 ; \mathrm{N}, 2.40$. Found: C, 64.17, H, 6.17; N, 2.49.

6-(Benzyloxy)-4-(tert-butyloxycarbonyl)-1-[(tetrahydropyranyloxy)-methyl]-1,2,3,4-tetrahydrobenzo[f]quinoline (23). A solution of 22 ($4.69 \mathrm{~g}, 8.05 \mathrm{mmol}$), AIBN ($264 \mathrm{mg}, 1.6 \mathrm{mmol}, 0.2$ equiv), and $\mathrm{Bu}_{3}-$ SnH ($4.33 \mathrm{~mL}, 16.1 \mathrm{mmol}, 2.0$ equiv), in benzene (280 mL) was warmed at reflux for 12 h . The reaction mixture was cooled and the solvent removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 5 \times 30 \mathrm{~cm}\right.$, $10-50 \% \mathrm{EtOAc}$-hexane gradient elution) afforded 23 ($3.30 \mathrm{~g}, 4.05 \mathrm{~g}$ theoretical, 81%) as a mixture of two diastereomers as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.27(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 8.02$ and 7.98 (two d, $1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}$), $7.54-7.48(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 9-\mathrm{H}$ and meta $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.44-7.30\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C} 5-\mathrm{H}, \mathrm{C} 8-\mathrm{H}\right.$, ortho and para $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.21$ (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 4.63 and 4.55 (m and dd, $1 \mathrm{H}, J=4.5,2.9 \mathrm{~Hz}, \mathrm{OCHO}$), 4.03-3.38 (m, 7H, C1-H, C3-H, $\mathrm{CH}_{2} \mathrm{OTHP}, \mathrm{OCH}_{2} \mathrm{CH}_{2}$), 2.42-2.32 $(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.00-1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 1.87-1.78(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CH}_{2}\right), 1.75-1.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CHHCH}_{2} \mathrm{CH}_{2}\right), 1.61-$ $1.53\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 154.0,152.64$ and $152.60,137.1$ and 137.0, 132.34 and $132.30,128.6,127.9,127.5,126.9$ and 126.8, 123.90 and 123.87, 123.45 and $123.42,122.9,122.7,122.6$ and $122.5,116.5$ and $116.4,104.1$ (C5), 100.1 and 98.2 (OCHO), 80.9, 70.1, 70.4 and $68.9,62.6$ and $62.2\left(\mathrm{CH}_{2} \mathrm{OTHP}\right), 41.9$ and $41.8\left(\mathrm{CH}_{2} \mathrm{~N}\right), 33.0$ and $32.3(\mathrm{Cl}), 30.7$, $25.9,25.8,25.4,19.7$ and 19.5, $\mathrm{IR}\left(\mathrm{CCl}_{4}\right) \nu_{\max } 2958,1741,1702,1623$, $1597,1168,1163 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/e $636.1730(\mathrm{M}+$ $\mathrm{Cs}^{+}, \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{5}$ requires 636.1726).

Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{5}: \mathrm{C}, 73.93 ; \mathrm{H}, 7.41 ; \mathrm{N}, 2.78$. Found: C, 73.68; H, 7.47; N, 2.85 .

6-(Benzyloxy)-4-(tert-butyloxycarbonyl)-1-(hydroxymethyl)-1,2,3,4tetrahydrobenzo[f]quinoline (24). A solution of 23 ($221 \mathrm{mg}, 0.44$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(10 \mathrm{~mL})$ was warmed with Amberlyst-15 (20 mg) at $50^{\circ} \mathrm{C}$ for 2 h . The resin was removed by filtration and the mixture was concentrated under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 1.5 \times 15\right.$ $\mathrm{cm}, 40 \%$ EtOAc-hexane) afforded 24 ($175 \mathrm{mg}, 184 \mathrm{mg}$ theoretical, 95%) as a low melting white solid: mp $50-54{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(\mathrm{dd}, 1 \mathrm{H}, J=0.8,8.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.6 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 7.54-7.49\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 9-\mathrm{H}\right.$ and meta $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.44-$ $7.33\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C} 8-\mathrm{H}\right.$, ortho and para $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 5.21(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$), 3.96-3.83(m, $\left.2 \mathrm{H}, \mathrm{C} H \mathrm{HOH}, \mathrm{C} 3-\mathrm{H}\right), 3.75(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-$ $\mathrm{H}), 3.69(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.0,10.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{HOH}), 3.60(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=12.9$, $5.8 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.16-2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H})$, $1.52\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.0\left(\mathrm{CO}_{2}\right)$, $152.8,137.6,137.0,132.3,128.6,128.0,127.5,127.0,124.1,123.6$, $122.7,122.6,116.5,104.3$ (C5), 81.0, 70.1, 65.2, 42.3 (C3), 34.6 (C1), $28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.0(\mathrm{C} 2) ;$ IR $\left(\mathrm{CCl}_{4}\right) \nu_{\max } 3635,3481,2977,2932$, 1701, 1623, 1596, 1367, 1324, 1248, $1159 \mathrm{~cm}^{-1}$; FABHRMS (NBACsI) $m / e 552.1161\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}\right.$ requires 552.1151$)$.

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NO}_{4}$: $\mathrm{C}, 74.44 ; \mathrm{H}, 6.97 ; \mathrm{N}, 3.34$. Found: C, 74.64; H, 7.08; N, 3.30.

6-(Benzyloxy)-4-(tert-butyloxycarbonyl)-1-(chloromethyl)-1,2,3,4tetrahydrobenzo[f]quinoline (25). A solution of $24(100 \mathrm{mg}, 0.238$ mmol) and $\mathrm{Ph}_{3} \mathrm{P}\left(187 \mathrm{mg}, 0.714 \mathrm{mmol}, 3.0\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$ under Ar was treated with $\mathrm{CCl}_{4}(230 \mu \mathrm{~L}, 2.38 \mathrm{mmol}, 10.0$ equiv). The mixture was protected from light and stirred for 8 h at $25^{\circ} \mathrm{C}$. Chromatography ($\mathrm{SiO}_{2}, 2 \times 25 \mathrm{~cm}, 0-15 \% \mathrm{EtOAc}$-hexane gradient elution) afforded $25(100 \mathrm{mg}, 104 \mathrm{mg}$ theoretical, 96%) as a pale yellow solid: mp $111-112{ }^{\circ} \mathrm{C}$ (hexane, plates); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.30(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.87(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H})$,
7.56-7.52 (m, 3H, C9-H and meta $\mathrm{C}_{6} \mathrm{H}_{5}$), 7.44-7.34 (m, 5H, C10-H, $\mathrm{C} 8-\mathrm{H}$, ortho and para $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right), 5.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right), 3.87-3.72$ (m, $\left.4 \mathrm{H}, \mathrm{C} 1-\mathrm{H}, \mathrm{C} 3-\mathrm{H}_{2}, \mathrm{C} H \mathrm{HCl}\right), 3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Cl}), 2.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-$ H), $2.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 153.8\left(\mathrm{CO}_{2}\right), 153.2,137.2,136.9,131.9,128.6,128.0,127.6$, $127.4,124.1,123.5,122.9,122.0,115.5,103.8$ (C5), 81.3, 70.2, 46.9 $\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 41.6(\mathrm{C} 3), 35.0(\mathrm{C} 1), 28.5\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.7(\mathrm{C} 2)$; IR $\left(\mathrm{CCl}_{4}\right)$ $\nu_{\max } 2978,2933,1704,1623,1596,1409,1368,1320,1245,1156 \mathrm{~cm}^{-1}$; FABHRMS (NBA-NaI) m/e $437.1758\left(\mathrm{M}^{+}, \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClNO}_{3}\right.$ requires 437.1758).

Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClNO}_{3}$: $\mathrm{C}, 71.30 ; \mathrm{H}, 6.44 ; \mathrm{N}, 3.20$. Found: C, $71.53 ; \mathrm{H}, 6.18 ; \mathrm{N}, 3.40$.

4-(tert-Butyloxycarbonyl)-1 (chloromethyl)-6-hydroxy-1,2,3,4-tetrahydrobenzo[f]quinoline (26). From 25: A solution of 25 (88.4 mg , $0.202 \mathrm{mmol})$ and $10 \% \mathrm{Pd} / \mathrm{C}(30 \mathrm{mg})$ in THF $(5 \mathrm{~mL})$ was stirred under 1 atm of H_{2} for 2 h at $25^{\circ} \mathrm{C}$. The mixture was filtered through Celite and concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 1 \times 15 \mathrm{~cm}$, 25% EtOAc-hexane) afforded 26 ($68.9 \mathrm{mg}, 70.3 \mathrm{mg}$ theoretical, 98%) as a white foam: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, 1 \mathrm{H}, J=8.3$ $\mathrm{Hz}, \mathrm{C} 7-\mathrm{H}), 7.86(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 7.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H})$, $7.42-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 5-\mathrm{H}$ and $\mathrm{C} 8-\mathrm{H}), 5.52(\mathrm{br} \mathrm{s}, \mathrm{OH}), 3.91-3.78(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}, \mathrm{C} 3-\mathrm{H}$ and CHHCl$), 3.69(\mathrm{ddd}, 1 \mathrm{H}, J=13.1,11.2,4.6 \mathrm{~Hz}$, $\mathrm{C} 3-\mathrm{H}), 3.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{Cl}), 2.45(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-$ $\mathrm{H}), 1.56\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.1\left(\mathrm{CO}_{2}\right)$, $150.8,136.6,132.1,127.3,123.9,122.7,122.3,122.0,115.1,106.0$ (C-5), 81.6, $46.5\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 41.4(\mathrm{C} 3), 34.9(\mathrm{C} 1), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.3$ (C2); IR (film) $\nu_{\max } 3340,2976,1670,1624,1596,1406,1369,1347$, $1248,1153 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 347.1278\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{3}\right.$ requires 347.1288).

Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{ClNO}_{3}: \mathrm{C}, 65.61 ; \mathrm{H}, 6.37 ; \mathrm{N}, 4.03$. Found: C, 65.38; H, 6.76; N, 3.92.

From 27: A solution of $27(20 \mathrm{mg}, 60.7 \mu \mathrm{~mol})$ and $\mathrm{Ph}_{3} \mathrm{P}(48 \mathrm{mg}$, $183 \mu \mathrm{~mol}, 3.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$ under Ar was treated with $\mathrm{CCl}_{4}(50 \mu \mathrm{~L}, 517 \mu \mathrm{~mol}, 6.5$ equiv). The mixture was protected from light and stirred for 7 h at $25^{\circ} \mathrm{C}$. Chromatography ($\mathrm{SiO}_{2}, 1 \times 15 \mathrm{~cm}$, 25% EtOAc-hexane) afforded 26 ($20.3 \mathrm{mg}, 21.1 \mathrm{mg}$ theoretical, 96%).

4-(tert-Butyloxycarbonyl)-6-hydroxy-1-(hydroxymethyl)-1,2,3,4tetrahydrobenzo[f]quinoline (27). Compound 24 ($59 \mathrm{mg}, 0.14 \mathrm{mmol}$) was added to a suspension of $10 \% \mathrm{Pd} / \mathrm{C}(20 \mathrm{mg})$ in THF (4 mL) carefully degassed and saturated with Ar. A solution of 25% aqueous $\mathrm{HCO}_{2} \mathrm{NH}_{4}(1 \mathrm{~mL})$ was added and the mixture was stirred for 7 h at 25 ${ }^{\circ} \mathrm{C}$. EtOAc $(20 \mathrm{~mL})$ was added, the organic layer was dried $\left(\mathrm{Na}_{2}-\right.$ SO_{4}), filtered through Celite, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 1.2 \times 15 \mathrm{~cm}, 40 \% \mathrm{EtOAc}-\right.$ hexane $)$ afforded $27(43 \mathrm{mg}$, 46 mg theoretical, 93%) as a white foam: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H})$, 7.68 (br s, 1H, ArOH), 7.34 (m, 1H, C9-H), 7.17-7.14 (m, 2H, C5 and $\mathrm{C} 8-\mathrm{H}$), 3.94 (ddd, $1 \mathrm{H}, J=12.8,8.3,5.6 \mathrm{~Hz}, \mathrm{C} 3-\mathrm{H}), 3.88-3.72$ (m, $3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$ and $\mathrm{CH}_{2} \mathrm{OH}$), 3.53 (ddd, $1 \mathrm{H}, J=12.8,7.0,5.8 \mathrm{~Hz}$, C3-H), $2.38(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.22(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 2.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H})$, $1.55\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1\left(\mathrm{CO}_{2}\right)$, $150.6,137.5,132.3,126.6,123.7,122.7,122.4,122.2,116.3,106.7$, 81.5, $65.3\left(\mathrm{CH}_{2} \mathrm{OH}\right), 43.0(\mathrm{C} 3), 34.3(\mathrm{C} 1), 28.4\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.2(\mathrm{C} 2)$; IR (film) $\nu_{\text {max }} 3346,2934,1668,1624,1596,1406,1368,1345,1253$, $1159 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $329.1619\left(\mathrm{M}^{+}, \mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}\right.$ requires 329.1627).
N^{3}-(tert-Butyloxycarbonyl)-2,3,10,10a-tetrahydro- $1 H$-cyclopropa-[d]benzo[f]quinol-5-one (9, N-BOC-CBQ). From 26: A solution of $26(9 \mathrm{mg}, 0.025 \mathrm{mmol})$ in DMF $(200 \mu \mathrm{~L})$ was added to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $1.2 \mathrm{mg}, 1.16$ equiv) in $\mathrm{THF}(100 \mu \mathrm{~L})$ at $25^{\circ} \mathrm{C}$ and the mixture was stirred for 30 min . A solution of pH 7 phosphate buffer (2 mL) was added. The mixture was extracted with $\mathrm{EtOAc}(3 \times 0.5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2}-\right.$ $\left.\mathrm{SO}_{4}\right)$ and concentrated under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times\right.$ $10 \mathrm{~cm}, 40 \% \mathrm{EtOAc}$-hexane) afforded $9(6.6 \mathrm{mg}, 8.0 \mathrm{mg}$ theoretical, 82%) as a white solid: mp $158{ }^{\circ} \mathrm{C}$ (EtOAc-hexane, needles); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.4 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 7.52(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 7.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 6.92(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}), 6.83$ (s, 1H, C4-H), $3.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 3.46(\mathrm{dt}, J=5.7,13.0 \mathrm{~Hz}, \mathrm{C} 2-\mathrm{H})$, 2.43 (m, 1H, C10a-H), $2.25(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} 10-\mathrm{H}), 1.89(\mathrm{dd}, 1 \mathrm{H}, J=8.4,5.7 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 1.51(\mathrm{~s}, 9 \mathrm{H}$, $\left.\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 185.1(\mathrm{C} 5), 155.5\left(\mathrm{CO}_{2}\right)$,

Table 3. Resolution of 9,26 , and 35

agent	\% i-PrOH-hexane, flow rate	t_{R} (min)	α	
9	OD Prep a	$20 \%, 8 \mathrm{~mL} / \mathrm{min}$	24.5 and 41.7	1.70
		$30 \%, 8 \mathrm{~mL} / \mathrm{min}$	16.3 and 26.0	1.60
		$40 \%, 8 \mathrm{~mL} / \mathrm{min}$	13.8 and 20.2	1.46
$\mathbf{2 6}$	OD Prep a	$20 \%, 8 \mathrm{~mL} / \mathrm{min}$	10.6 and 11.3	1.07
		$10 \%, 8 \mathrm{~mL} / \mathrm{min}$	14.5 and 16.4	1.13
		$5 \%, 8 \mathrm{~mL} / \mathrm{min}$	21.4 and 25.6	1.19
		$3 \%, 8 \mathrm{~mL} / \mathrm{min}$	28.6 and 34.4	1.18
	OD Analy b	$3 \%, 1 \mathrm{~mL} / \mathrm{min}$	15.3 and 17.7	1.16
		$2 \%, 0.7 \mathrm{~mL} / \mathrm{min}$	30.2 and 34.9	1.15
35	OD Prep a	$30 \%, 8 \mathrm{~mL} / \mathrm{min}$	20.3 and 29.1	1.43
		$25 \%, 8 \mathrm{~mL} / \mathrm{min}$	23.2 and 33.5	1.44
	OD Analy			
		$10 \%, 2 \mathrm{~mL} / \mathrm{min}$	8.61 and 12.7	1.47

${ }^{a} 10 \mu \mathrm{~m}, 2 \times 25 \mathrm{~cm}$ semipreparative Daicel chiralcel column. ${ }^{b} 10$ $\mu \mathrm{m}, 0.46 \times 25 \mathrm{~cm}$ Daicel chiralcel analytical column.
153.0 (C), 143.9 (C), 132.1 (CH), 131.9 (C), 126.3 (CH), 126.1 (CH), $121.7(\mathrm{CH}), 120.5(\mathrm{CH}), 82.5\left(\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 44.1(\mathrm{C} 2), 33.7(\mathrm{C} 10 \mathrm{a}), 28.2}\right.$ $\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 27.6(\mathrm{C} 9 \mathrm{~b}), 25.6(\mathrm{C} 1), 20.9(\mathrm{C} 10) ; \mathrm{IR}(\mathrm{KBr}) v_{\max } 2980,1705$, $1639,1604,1568,1483,1461,1406,1308,1280,1228,1159,1126$ cm^{-1}; UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max } 314(\epsilon 19000), 260(\epsilon 9000), 218(\epsilon 17000)$ $\mathrm{nm} ; \mathrm{UV}$ (THF) $\lambda_{\max } 302(\epsilon 16000), 254$ (9400), 218 (16000) nm; FABHRMS (NBA) m/e $312.1615\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{3}\right.$ requires 312.1600).

From 27: A solution of $27(9.1 \mathrm{mg}, 27.6 \mu \mathrm{~mol})$ and $\mathrm{Ph}_{3} \mathrm{P}(8.7 \mathrm{mg}$, $33.2 \mu \mathrm{~mol}, 1.2$ equiv) in THF (0.2 mL) was treated with DEAD (5.2 $\mu \mathrm{L}, 33.0 \mu \mathrm{~mol}, 1.2$ equiv), and the resulting mixture was stirred 1 h at $25^{\circ} \mathrm{C}$. The mixture was diluted with EtOAc (5 mL), washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times 10 \mathrm{~cm}, 40 \% \mathrm{EtOAc}-$ hexane $)$ afforded 9 ($5.1 \mathrm{mg}, 8.6 \mathrm{mg}$ theoretical, 59%).

A single-crystal X-ray structure determination of 9 was conducted with needles grown from 5% EtOAc-hexane. ${ }^{37}$

Resolution of \boldsymbol{N}-BOC-CBQ (9). A solution of 9 (40 mg) in 1 mL i - PrOH -hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 75: 20)$ was resolved on a semipreparative Daicel chiralcel OD column $(10 \mu \mathrm{~m}, 2 \times 25 \mathrm{~cm})$ using $30 \% i-\mathrm{PrOH}-$ hexane eluent at a flow rate of $8 \mathrm{~mL} / \mathrm{min}$. The effluent was monitored at 314 nm and the enantiomers eluted with retention times of 16.3 and 26.0 min , respectively ($\alpha=1.60$). The fractions containing the separated enantiomers were collected and the solvent evaporated in vacuo to afford ent-(+)-N-BOC-CBQ ($\left.t_{\mathrm{R}}=16.3 \mathrm{~min}, 18 \mathrm{mg}\right)$ and (-)-N-BOC-CBQ ($t_{\mathrm{R}}=26.0 \mathrm{~min}, 19 \mathrm{mg}$) with a 93% recovery. HPLC of the separated enantiomers indicated they were $>99.9 \%$ ee. A study of the direct resolution of 9 and related agents is summarized in Table $3\left[\right.$ ent-(+)-9: $[\alpha]^{25}{ }_{\mathrm{D}}+318(c 0.19, \mathrm{THF}) ;(-)-9:[\alpha]^{25}-307(c 0.18$, THF)].

2,3,10,10a-Tetrahydro-1H-cyclopropa[d]benzo[f]quinol-5-one (10, CBQ). Method A, From 26: The solid $26(10 \mathrm{mg}, 0.029 \mathrm{mmol})$ was treated with $3 \mathrm{M} \mathrm{HCl}-E t O A c(0.5 \mathrm{~mL})$ and the solution was stirred at $25^{\circ} \mathrm{C}$ until the starting material disappeared as monitored by TLC (ca. $15-20 \mathrm{~min}$). The solvent was removed under a stream of Ar before THF (0.5 mL) and 5% aqueous $\mathrm{NaHCO}_{3}(0.5 \mathrm{~mL}, 10$ equiv) were added and the mixture was stirred for 2 h at $25^{\circ} \mathrm{C}$. The mixture was extracted with EtOAc ($3 \times 1 \mathrm{~mL}$) and the combined organic phase was washed with $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times 5 \mathrm{~cm}, 10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded 10 ($4 \mathrm{mg}, 6 \mathrm{mg}$ theoretical, 67%) as a yellow foam: ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 8.08$ (dd, $1 \mathrm{H}, J=7.8,1.5 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}$), 7.42 (ddd, $1 \mathrm{H}, J=8.0,7.2,1.6 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}), 7.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}), 6.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 5.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 3.34-3.25$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{H}_{2}\right), 2.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{a}-\mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}), 2.23-$ $2.17(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}$, partially obscured by acetone, $\mathrm{C} 1-\mathrm{H}$), 1.51 (dd, $1 \mathrm{H}, J=8.4,5.2 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}) $\delta 181.0(\mathrm{C} 5), 164.6,143.2,134.6,131.1,126.0,125.9$, $121.0,100.1,38.2$ (C2), 29.2, 28.3, 23.4 (C9b), 20.2; IR (film) $\nu_{\text {max }}$ $3247,3150,3033,2929,1611,1587,1538,1259 \mathrm{~cm}^{-1}$; UV (THF) $\lambda_{\max } 326(\epsilon 10500), 240(\epsilon 14000), 219(\epsilon 20000) \mathrm{nm} ;$ FABHRMS (NBA) $m / e 212.1075\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}\right.$ requires 212.1075).

Method B, From 26: The solid $26(2 \mathrm{mg}, 5.75 \mu \mathrm{~mol})$ was treated with $3 \mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}(0.5 \mathrm{~mL})$ and the solution was stirred at $25^{\circ} \mathrm{C}$
until the starting material disappeared (TLC, $15-20 \mathrm{~min}$). The solvent was removed under a stream of Ar and dissolved in DMF $(200 \mu \mathrm{~L})$. This solution was added to a suspension of $\mathrm{NaH}(60 \%$ in mineral oil, $2 \mathrm{mg}, 50 \mu \mathrm{~mol}, 8.7$ equiv) in THF ($200 \mu \mathrm{~L}$) and the mixture was stirred 5 min at $25^{\circ} \mathrm{C}$. The mixture was cooled at $0^{\circ} \mathrm{C}$, a pH 7 buffer solution was added (1 mL), and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times$ $0.5 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times 7 \mathrm{~cm}\right.$, $10 \% \mathrm{CH}_{3} \mathrm{OH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $10(0.6 \mathrm{mg}, 1.2 \mathrm{mg}$ theoretical, $50 \%)$ identical to the material detailed above.

4-Acetyl-1-(chloromethyl)-6-hydroxy-1,2,3,4-tetrahydrobenzo[f]quinoline (29). A solution of $26(1.9 \mathrm{mg}, 5.5 \mu \mathrm{~mol})$ in $4 \mathrm{M} \mathrm{HCl}-$ EtOAc was stirred for 30 min at $25^{\circ} \mathrm{C}$. The solvent was removed under a stream of Ar to afford 28. Crude 28 was suspended in THF ($40 \mu \mathrm{~L}$) and treated with NaHCO_{3} ($0.5 \mathrm{mg}, 6.0 \mu \mathrm{~mol}, 1.1$ equiv) and $\mathrm{CH}_{3} \mathrm{COCl}(1 \mu \mathrm{~L}, 14.1 \mu \mathrm{~mol}, 2.6$ equiv). The mixture was stirred for 30 min at $25^{\circ} \mathrm{C}$ before $\mathrm{EtOAc}(0.2 \mathrm{~mL})$ and phosphate buffer (pH 7 , 1 mL) were added. The aqueous layer was extracted with EtOAc (2 $\times 0.2 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times 6 \mathrm{~cm}, 50-\right.$ $100 \% \mathrm{EtOAc}$-hexane gradient elution) afforded $29(1.3 \mathrm{mg}, 1.6 \mathrm{mg}$ theoretical, 81%) as an amorphous tan solid: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3^{-}}\right.$ OD) $\delta 8.24(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.95(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{C} 10-$ H), $7.57(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 7.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 6.85(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H})$, $4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 4.01(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 3.82(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4,10.8$ $\mathrm{Hz}, \mathrm{CHHCl}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J=8.9,10.8 \mathrm{~Hz}, \mathrm{CH} H \mathrm{Cl}), 3.40(\mathrm{~m}, 1 \mathrm{H}$, C3-H), 2.43 (m, 1H, C2-H), 2.27 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 2.19 (m, 1H, C2-H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.9$ (CO), $152.8,139.1,133.2,128.1$, $124.8,124.2,123.7,123.4,109.8,107.5,48.6\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 42.3(\mathrm{C} 3), 35.4$, 27.7, 23.7; IR (film) $\nu_{\text {max }} 3177,2932,1621,1591,1520,1442,1403$, $1315,1249,766 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA) $m / e 289.0860\left(\mathrm{M}^{+}, \mathrm{C}_{16} \mathrm{H}_{16}-\right.$ CINO_{2} requires 289.0870).
N^{3}-Acetyl-2,3,10,10a-tetrahydro-1H-cyclopropa[d]benzo[f]quinol-5-one (30, N-acetyl-CBQ). Method A: A solution of $29(4.4 \mathrm{mg}$, $15.1 \mu \mathrm{~mol})$ in THF-DMF $(2: 1,150 \mu \mathrm{~L})$ was treated with DBU $(6.8$ $\mu \mathrm{L}, 45.4 \mu \mathrm{~mol}, 3$ equiv) and the mixture was stirred for 8 h at $25^{\circ} \mathrm{C}$. The solvents were removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}\right.$, $0.5 \times 5 \mathrm{~cm}, 20-100 \%$ THF-hexane gradient elution) afforded 30 (2.5 $\mathrm{mg}, 3.8 \mathrm{mg}$ theoretical, 66%) as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, acetone- d_{6}) $\delta 8.13(\mathrm{dd}, 1 \mathrm{H}, J=7.9,1.4 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-$ $\mathrm{H}), 7.42(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}), 7.18(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C} 4-\mathrm{H}), 3.75-3.61\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{H}_{2}\right), 2.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10 \mathrm{a}-\mathrm{H}), 2.34(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 10-\mathrm{H}), 2.22-2.14(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 2.14$ (dd, $1 \mathrm{H}, J=8.8,5.8 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone- d_{6}) $\delta 184.5$ (C5), 170.2 (CO), 158.3, 145.1, 133.2, 132.9, $126.8,126.4,122.7,122.5,44.6(\mathrm{C} 2), 35.9,26.5,25.6,23.3,21.7$; IR (film) $v_{\max } 2922,2852,1669,1634,1602,1560,1462,1406,1370$, 1302, $1283,1232,1038 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e 254.1190 (M $+\mathrm{H}^{+}, \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}$ requires 254.1181).

Method B: A solution of $29(7 \mathrm{mg}, 24.1 \mu \mathrm{~mol})$ in DMF ($200 \mu \mathrm{~L}$) was added to a suspension of $\mathrm{NaH}(2 \mathrm{mg}, 60 \%$ in oil, $50.0 \mu \mathrm{~mol}, 2.1$ equiv) in THF ($100 \mu \mathrm{~L}$) and the mixture was stirred for 30 min at 25 ${ }^{\circ} \mathrm{C}$. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a pH 7 phosphate buffer solution (3 mL) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 0.5 \mathrm{~mL})$, and the combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum. Chromatography $\left(\mathrm{SiO}_{2} 0.5 \times 6 \mathrm{~cm}\right.$, $20-100 \%$ THF-hexane gradient elution) afforded $30(4 \mathrm{mg}, 6.1 \mathrm{mg}$ theoretical, 67%) identical to the material described above.
seco-CBQ-TMI (35). A solution of $26(19.1 \mathrm{mg}, 54.9 \mu \mathrm{~mol})$ in 4 $\mathrm{M} \mathrm{HCl}-E t O A c(1 \mathrm{~mL})$ was stirred for 30 min at $25^{\circ} \mathrm{C}$. The solvent was removed under a stream of Ar and the resulting solid was dissolved in DMF $(250 \mu \mathrm{~L})$. This solution was treated sequentially with $5,6,7-$ trimethoxyindole-2-carboxylic acid ($31,13.7 \mathrm{mg}, 54.9 \mu \mathrm{~mol}, 1$ equiv) and [[3-(dimethylamino)propyl]ethyl]carbodiimide hydrochloride (EDCI, $31.6 \mathrm{mg}, 165 \mu \mathrm{~mol}, 3$ equiv) and stirred for 2 h at $25^{\circ} \mathrm{C}$. Water (3 mL) was added and the mixture was extracted with EtOAc (3×1 $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 1 \times 10 \mathrm{~cm}, 50 \%\right.$ EtOAc-hexane) afforded 35 ($14.8 \mathrm{mg}, 26.1 \mathrm{mg}$ theoretical, 57%) as a white amorphous powder: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.09(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 8.23(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.97(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 10-$ $\mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 7.47(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 6.61$
(s, 1H, C4'-H), 6.49 (s, 1H, C5-H), 6.17 (d, $1 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}, \mathrm{C} 3^{\prime}-\mathrm{H}$), $4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 3.99(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}), 3.92-3.83(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHHCl})$, $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.73-3.60(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}$ and $\mathrm{CH} H \mathrm{Cl}), 3.64\left(\mathrm{~s}, \mathrm{OCH}_{3}\right), 2.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5(\mathrm{CO}), 151.2,149.6,139.6,138.6$, 137.3, 132.3, 129.2, 127.7, 125.4, 124.7, 123.8, 123.2, 123.1, 122.4, 117.9, 108.7, 107.4, 97.6, 61.5, 60.9, 55.9, $47.3\left(\mathrm{CH}_{2} \mathrm{Cl}\right), 43.0(\mathrm{C} 3)$, 34.9, 26.9; IR (film) $\nu_{\max } 3290,2937,1735,1704,1590,1525,1494$. $1464,1443,1403,1373,1309,1237,1196,1122,1105 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $480.1468\left(\mathrm{M}^{+}, \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right.$ requires 480.1452).

A sample of $35(13 \mathrm{mg})$ in $30 \% i$ - PrOH -hexane was resolved on a semipreparative Daicel chiralcel OD column ($10 \mu \mathrm{~m}, 2 \times 25 \mathrm{~cm}$) using $30 \% i$ - PrOH -hexane eluent ($8 \mathrm{~mL} / \mathrm{min}$). The effluent was monitored at 263 nm and the enantiomers eluted with retention times of 20.3 and $29.1 \mathrm{~min}(\alpha=1.43)$. The fractions containing the separated enantiomers were collected and concentrated to afford ent-(+)-35 ($t_{\mathrm{R}}=29.1$ $\mathrm{min}, 5.4 \mathrm{mg})$ and $(-)-35\left(t_{\mathrm{R}}=20.3 \mathrm{~min}, 5.8 \mathrm{mg}\right)$ with a 86% recovery (> 99.9\% ee), Table 3 [ent-(+)-(1S)-35: $[\alpha]^{25}{ }_{\mathrm{D}}+217$ (c 0.27, THF); ($1 R$)-35: $[\alpha]^{25}{ }_{\mathrm{D}}-212$ (c $\left.0.29, \mathrm{THF}\right)$].

CBQ-TMI (36). A solution of $\mathbf{3 5}(5.5 \mathrm{mg}, 11.6 \mu \mathrm{~mol})$ in DMF ($100 \mu \mathrm{~L}$) was added to a suspension of $\mathrm{NaH}(0.5 \mathrm{mg}, 60 \%$ in oil, 12.5 μ mol, 1.07 equiv) in THF ($50 \mu \mathrm{~L}$) and the mixture was stirred for 30 \min at $25^{\circ} \mathrm{C}$. The mixture was cooled to $-10^{\circ} \mathrm{C}$ and a pH 7 phosphate buffer solution (2 mL) was added. The mixture was extracted with EtOAc ($3 \times 0.5 \mathrm{~mL}$), and the combined organic layers were dried ($\mathrm{Na}_{2}-$ SO_{4}) and concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times$ $6 \mathrm{~cm}, \mathrm{EtOAc}$) afforded 36 ($3.7 \mathrm{mg}, 5.1 \mathrm{mg}$ theoretical, 72%) as an amorphous powder: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.90$ (br s, 1 H , NH), 8.27 (dd, $1 \mathrm{H}, J=1.3,7.9 \mathrm{~Hz}, \mathrm{C} 6-\mathrm{H}$), $7.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 7.46$ (m, $1 \mathrm{H}, \mathrm{C} 7-\mathrm{H}$), $7.04(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{C} 9-\mathrm{H}), 6.60\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4^{\prime}-\mathrm{H}\right)$, $6.55\left(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}\right), 6.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $3.95-3.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2-\mathrm{H}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.78(\mathrm{~s}, 3 \mathrm{H}$, OCH_{3}), $2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ClOa}-\mathrm{H}), 2.42-2.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Cl}-\mathrm{H}_{2}\right.$ and $\mathrm{Cl} 0-$ H), 2.17 (dd, $1 \mathrm{H}, J=5.2,8.8 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}$); IR (film) $v_{\text {max }} 2934,1625$, 1601, 1463, 1304, 1279, 1263, 1222, 1106, $1044 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $445.1742\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{5}\right.$ requires 445.1763). $\left[\right.$ ent- $(+)$-CBQ-TMI: $[\alpha]^{25} \mathrm{D}+179$ ($c 0.09$, THF); (-)-CBQ-TMI: $[\alpha]^{25} \mathrm{D}_{\mathrm{D}}$ - 171 ($c 0.07, \mathrm{THF}$)].
seco-CBQ-Indole ${ }_{2}$ (37). A solution of $26(2.3 \mathrm{mg}, 6.6 \mu \mathrm{~mol})$ in 4 $\mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}(0.5 \mathrm{~mL})$ was stirred for 30 min at $25^{\circ} \mathrm{C}$. The solvent was removed under a stream of Ar and the resulting solid was taken up in DMF ($60 \mu \mathrm{~L}$). The solution was treated sequentially with 5-(2-indolylcarbonyl)amino]-2-methylindole ($32,2.1 \mathrm{mg}, 6.6 \mu \mathrm{~mol}, 1$ equiv) and EDCI ($3.8 \mathrm{mg}, 19.8 \mu \mathrm{~mol}, 3$ equiv). The mixture was stirred for 6 h at $25{ }^{\circ} \mathrm{C}$ before the solvent was removed under vacuum. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times 5 \mathrm{~cm}, 10-50 \%$ DMF-toluene gradient elution) afforded $37(1.7 \mathrm{mg}, 3.6 \mathrm{mg}$ theoretical, 47%) as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, acetone- $\left.d_{5}\right) \delta 11.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.65$ (s, $1 \mathrm{H}, \mathrm{NH}$), $10.24(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 8.06$ $(\mathrm{d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 7.64-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.22$ (m, 1H, C $6^{\prime \prime}-\mathrm{H}$), 7.07 (m, 1H, C5"-H), 6.73 (s, 1H, C5-H), 6.43 (s, $1 \mathrm{H}, \mathrm{OH}), 4.35(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 4.08-4.01(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$ and $\mathrm{C} H \mathrm{HCl})$, 3.93-3.86 (m, 2H, C3-H and $\mathrm{CH} H \mathrm{Cl}), 2.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.27(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 2-\mathrm{H})$; IR (film) $\nu_{\text {max }} 3278,2917,2849,1655,1590,1543,1525$, $1410,1313,1245 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 549.1688\left(\mathrm{M}+\mathrm{H}^{+}\right.$, $\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires 549.1693).
seco-CBQ-CDPI ${ }_{1}$ (39). A solution of $26(10 \mathrm{mg}, 28 \mu \mathrm{~mol})$ in 4 M HCl -EtOAc (0.5 mL) was stirred for 30 min at $25^{\circ} \mathrm{C}$. The solvent was removed under a stream of Ar and the resulting solid was taken up in DMF ($80 \mu \mathrm{~L}$). The solution was treated sequentially with 33^{35} ($7 \mathrm{mg}, 28 \mu \mathrm{~mol}, 1$ equiv) and EDCI ($21 \mathrm{mg}, 109 \mu \mathrm{~mol}, 3.9$ equiv). The mixture was stirred 12 h at $25^{\circ} \mathrm{C}$. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times\right.$ $6 \mathrm{~cm}, 20-66 \%$ DMF-toluene gradient elution) afforded $39(7.4 \mathrm{mg}$, 13.6 mg theoretical, 54%) as a yellow powder: ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.19(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J=8.5 \mathrm{~Hz}$, $\mathrm{C} 10-\mathrm{H}), 7.92$ (d, $1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}$), 7.58 (m, 1H, C9-H), 7.44 (m, 1H, C8-H), $7.24\left(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}\right), 6.61(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H})$, 6.29 (s, 1H, C8'-H), 4.35 (m, 1H, C3-H), 4.04 (m, 1H, C1-H), 3.99$3.94\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHHCl}, \mathrm{C}^{\prime}-\mathrm{H}_{2}\right), 3.83-3.74(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHHCl}, \mathrm{C} 3-\mathrm{H}), 3.13$ (m, 2H, C1' H_{2}), $2.53(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.23$ (m, 1H, C2-H); IR (film) $\nu_{\text {max }} 3221,2958,2873,1658,1649,1642,1595,1503,1453,1408$,
$1339 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m/e $474.1454\left(\mathrm{M}^{+}, \mathrm{C}_{26} \mathrm{H}_{23} \mathrm{ClN}_{4} \mathrm{O}_{3}\right.$ requires 474.1459).
seco-CBQ-CDPI \mathbf{I}_{2} (41). A solution of $26(3.5 \mathrm{mg}, 10 \mu \mathrm{~mol})$ in 4 $\mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}(0.5 \mathrm{~mL})$ was stirred 30 min at $25^{\circ} \mathrm{C}$. The solvent was removed under a stream of Ar and the resulting solid was taken up in DMF ($100 \mu \mathrm{~L}$). The solution was treated sequentially with 34^{35} ($4.3 \mathrm{mg}, 10 \mu \mathrm{~mol}, 1$ equiv) and $\operatorname{EDCI}(5.8 \mathrm{mg}, 30 \mu \mathrm{~mol}, 3$ equiv). The mixture was stirred 2 h at $25^{\circ} \mathrm{C}$. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times 6 \mathrm{~cm}$, 20% DMF-toluene) afforded 41 ($2.2 \mathrm{mg}, 6.6 \mathrm{mg}$ theoretical, 33% unoptimized) as a yellow powder: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMF}-d_{7}$) δ 11.80 (br s, $1 \mathrm{H}, \mathrm{NH}$), 11.55 (br s, 1H, NH), 10.45 (br s, $1 \mathrm{H}, \mathrm{OH}$), 8.32 $\left(\mathrm{m}, \mathrm{C}^{\prime}-\mathrm{H}\right), 8.22(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}$, $\left.\mathrm{C} 4^{\prime \prime}-\mathrm{H}\right), 8.06(\mathrm{~d}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 7.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 7.48$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}$), 7.43 (d, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{C} 5^{\prime}-\mathrm{H}$), $7.36(\mathrm{~d}, 1 \mathrm{H}, J=9.0$ $\left.\mathrm{Hz}, \mathrm{C}^{\prime \prime}-\mathrm{H}\right), 7.03\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1 \mathrm{~Hz}, \mathrm{C} 8^{\prime \prime}-\mathrm{H}\right), 6.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 6.64$ (d, $\left.1 \mathrm{H}, J=1 \mathrm{~Hz}, \mathrm{C}^{\prime}-\mathrm{H}\right), 6.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 4.66\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2^{\prime}-\mathrm{H}_{2}\right.$), 4.33 (m, 1H, C3-H), $4.14\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 2^{\prime \prime}-\mathrm{H}_{2}\right), 4.07-3.96(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 1-$ $\mathrm{H}, \mathrm{C} H \mathrm{HCl}), 3.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}, \mathrm{CH} H \mathrm{Cl}), 3.38-3.28\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cl}-\mathrm{H}_{2}\right.$ and $\mathrm{Cl}^{\prime \prime}-\mathrm{H}_{2}$), $2.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 2.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}) ; \mathbb{R}($ film $) \nu_{\text {max }}$ 3353, 2922, 1658, 1650, 1643, 1600, 1581, 1512, 1503, 1434, 1409, $1365,1344 \mathrm{~cm}^{-1} ;$ FABHRMS (NBA) m/e $659.2168\left(\mathrm{M}+\mathrm{H}^{+}, \mathrm{C}_{37} \mathrm{H}_{31^{-}}\right.$ $\mathrm{ClN}_{6} \mathrm{O}_{4}$ requires 659.2173).

Acid-Catalyzed Addition of $\mathrm{CH}_{3} \mathrm{OH}$ to (\pm)-N-BOC-CBQ (9). A solution of (\pm)-9 $(7.3 \mathrm{mg}, 23.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{OH}(2 \mathrm{~mL})$ was treated with $0.011 \mathrm{M} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\mathrm{CH}_{3} \mathrm{OH}(250 \mu \mathrm{~L}, 2.83 \mu \mathrm{~mol}, 0.12$ equiv) at $0{ }^{\circ} \mathrm{C}$ providing a final concentration of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ of 1.26 mM . The mixture was stirred under Ar for 1 h at $25^{\circ} \mathrm{C}$ at which time TLC showed complete disappearance of 9 and generation of two products. $\mathrm{NaHCO}_{3}(5 \mathrm{mg})$ was added and the solution was stirred for 10 min . The suspension was filtered through Celite and concentrated under vacuum. Chromatography ($\mathrm{SiO}_{2}, 1 \times 9 \mathrm{~cm}, 25-50 \% \mathrm{EtOAc}-$ hexane gradient elution) afforded $43(4.0 \mathrm{mg}, 59 \%)$ and $44(2.9 \mathrm{mg}, 36 \%)$ for a combined yield of 96%. For 4-(tert-butyloxycarbonyl)-6-hydroxy-1-(methoxymethyl)-1,2,3,4-tetrahydrobenzo[ffquinoline (43): ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{C} 7-\mathrm{H}), 7.94(\mathrm{~d}, 1 \mathrm{H}, J$ $=8.5 \mathrm{~Hz}, \mathrm{C} 10-\mathrm{H}), 7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 9-\mathrm{H}), 7.39(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 7.34(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{C} 5-\mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.84-3.69\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} 1-\mathrm{H}\right.$ and $\left.\mathrm{C} 3-\mathrm{H}_{2}\right)$, 3.62 (dd, $1 \mathrm{H}, J=4.0,9.7 \mathrm{~Hz}, \mathrm{CHHOMe}$), $3.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.34$ (t, $1 \mathrm{H}, J=10 \mathrm{~Hz}, \mathrm{CH} H \mathrm{OMe}$), $2.32(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 1.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-$ H), 1.53 (s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; \mathbb{R} (film) $v_{\text {max }} 3304,2975,2929,1699,1668$, 1623, 1597, 1404, 1367, 1343, 1256, 1160, $1074 \mathrm{~cm}^{-1}$; FABHRMS (NBA) $m / e 343.1780\left(\mathrm{M}^{+}, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}\right.$ requires 343.1784).
For 5-(tert-butyloxycarbonyl)-7-hydroxy-2-methoxy-1,2,3,4-tetrahy-dro- 5 H -naphth $[1,2-b]$ azepine (44): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) of two conformers $\delta 8.24-8.22(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}), 8.11-8.09(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Cl1}-$ H), $7.56-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 9-\mathrm{H}$ and $\mathrm{C} 10-\mathrm{H}$), 6.68 and 6.65 (two s, 1 H , C6-H), 4.30-4.14 and 4.06-3.96 (two m, 1H, C4-H), 3.87-3.77 and $3.70-3.66$ (two m, 1H, C2-H), 3.49 and 3.29 (two s $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.25-$ $3.13(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 2.90-2.80(\mathrm{~m})$ and $2.68(\mathrm{dd}, J=11,13 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{C} 1-\mathrm{H}_{2}\right), 2.10-1.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 3-\mathrm{H}_{2}\right), 1.56$ and 1.39 (two s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; variable temperature NMR (400 MHz , DMSO- d_{6}) indicated that the signals begin to coalesce at $50-70^{\circ} \mathrm{C}$ and provided a sharp, wellresolved spectrum at $140^{\circ} \mathrm{C}: \delta 9.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 8.22(\mathrm{dd}, 1 \mathrm{H}, J$ $=8.3,0.6 \mathrm{~Hz}, \mathrm{C} 8-\mathrm{H}), 8.09(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{Cl} 11-\mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{C} 10-\mathrm{H}), 7.44$ (m, 1H, C9-H), 6.78 (s, 1H, C6-H), 3.77 (m, 1H, C4-H), $3.48(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2-\mathrm{H}), 3.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.44(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}), 3.12$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$), 2.76 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 1-\mathrm{H}$), $1.95(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.83(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{C} 3-\mathrm{H}), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR (film) $v_{\text {max }} 3284,2976,2930$, 1694, 1667, 1595, 1409, 1367, 1322, 1258, 1163, $1091 \mathrm{~cm}^{-1}$; FABHRMS (NBA-NaI) m/e $343.1778\left(\mathrm{M}^{+}, \mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{4}\right.$ requires 343.1784).

Acid-Catalyzed Addition of $\mathrm{CH}_{3} \mathrm{OH}$ to of (+)-N-BOC-CBQ [(+)9]. A solution of $(+)-9(4.5 \mathrm{mg}, 14.4 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{OH}(1.2 \mathrm{~mL})$ was treated with $0.011 \mathrm{M} \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}-\mathrm{CH}_{3} \mathrm{OH}(150 \mu \mathrm{~L}, 1.70 \mu \mathrm{~mol}, 0.12$ equiv) at $0{ }^{\circ} \mathrm{C}$ providing a final concentration of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ of 1.25 mM . The mixture was stirred under Ar for 1 h at $25^{\circ} \mathrm{C}$ at which time TLC showed complete disappearance of $(+)-9$ and the generation of two products. $\mathrm{NaHCO}_{3}(5 \mathrm{mg})$ was added and the mixture was stirred for 10 min . The suspension was filtered through Celite and concentrated under vacuum to give a mixture ($4.8 \mathrm{mg}, 5.0 \mathrm{mg}$ theoretical) of the two crude methanolysis products. Samples (1 mg) of this mixture dissolved in 5\% i-PrOH-hexane were eluted on a Diacel chiralcel OD
analytical HPLC column ($10 \mu \mathrm{~m}, 0.46 \times 25 \mathrm{~cm}$) with $1 \% i$-PrOHhexane at a flow rate of $2 \mathrm{~mL} / \mathrm{min}$ and the results are illustrated in Figure 2. Authentic samples of $(\pm)-43$ eluted with $t_{\mathrm{R}}=13.1$ and 14.2 min and those of $(\pm)-44$ eluted with $t_{\mathrm{R}}=18.1$ and 24.9 min . Only one enantiomer of $43\left(t_{\mathrm{R}}=14.1 \mathrm{~min}\right)$ and $44\left(t_{\mathrm{R}}=17.7 \mathrm{~min}\right)$ was detected in the acid-catalyzed addition of $\mathrm{CH}_{3} \mathrm{OH}$ to $(+)-9$, Figure 2.

Addition of HCl to 36 . A solution of $36(3.7 \mathrm{mg}, 8.3 \mu \mathrm{~mol})$ in THF ($200 \mu \mathrm{~L}$) was cooled to $-78^{\circ} \mathrm{C}$ and treated with $4 \mathrm{M} \mathrm{HCl}-$ EtOAc ($4 \mu \mathrm{~L}, 16 \mu \mathrm{~mol}, 1.9$ equiv). The mixture was stirred for 2 min before the solvent and HCl were removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times 15 \mathrm{~cm}, 30-50 \% \mathrm{EtOAc}\right.$-hexane gradient elution) afforded $35(2.1 \mathrm{mg})$ identical in all respects with authentic material and 45 as a colorless oil $(1.6 \mathrm{mg}$; total $3.7 \mathrm{mg}, 4.0 \mathrm{mg}$ theoretical, 93%). For $45:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of two conformers $\delta 9.17$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $8.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}$) and $8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, C8-H), 8.15 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 11-\mathrm{H}), 7.71-7.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 9-\mathrm{H}$ and $\mathrm{C} 10-\mathrm{H}$), 6.80 and 6.65 (two $\mathrm{s}, 1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}$), 6.60 and 6.57 (two s, $1 \mathrm{H}, \mathrm{C}^{\prime}-\mathrm{H}$), 6.38 and 6.37 (two s, OH), 5.38 and 5.36 (two d, $J=2$ $\mathrm{Hz}, \mathrm{C} 3^{\prime}-\mathrm{H}$), 4.89 and $4.76-4.70$ (two $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$), 4.02-3.77 (m, $2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}), 3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67$ and 3.66 (two $\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.36,3.20$ and 2.89 (three $\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 1-$ H_{2}), 2.53-2.05 (m, 2H, C3-H2); IR (film) $\nu_{\max } 3254,2920,2859,1584$, $1467,1446,1395,1300,1261,1237 \mathrm{~cm}^{-1}$; FABHRMS (NBA) m / e $480.1470\left(\mathrm{M}^{+}, \mathrm{C}_{26} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}_{5}\right.$ requires 480.1452$)$.

Addition of $\mathbf{H C l}$ to $\mathbf{3 0}$. A solution of $\mathbf{3 0 (1 \mathrm { mg } , 3 . 9 \mu \mathrm { mol }) \text { in THF }}$ ($100 \mu \mathrm{~L}$) was cooled to $-78^{\circ} \mathrm{C}$ and treated with $3.8 \mathrm{M} \mathrm{HCl}-\mathrm{EtOAc}$ ($20 \mu \mathrm{~L}, 76 \mu \mathrm{~mol}, 19.2$ equiv). The mixture was stirred for 2 mm before the solvent and HCl were removed under vacuum. Chromatography $\left(\mathrm{SiO}_{2}, 0.5 \times 10 \mathrm{~cm}, 30-50 \% \mathrm{EtOAc}\right.$-hexane gradient elution) afforded $29(0.6 \mathrm{mg})$ identical in all respects with authentic material and 46 as a colorless oil (0.2 mg , total $0.8 \mathrm{mg}, 1.1 \mathrm{mg}$ theoretical, 72%). For 46: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of two rotamers $\delta 8.27-8.23$ (m, $1 \mathrm{H}, \mathrm{Cl} 1-\mathrm{H}$), $8.11-8.08$ (m, $1 \mathrm{H}, \mathrm{C} 8-\mathrm{H}$), $7.65-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} 10-\mathrm{H}$ and $\mathrm{C} 9-\mathrm{H}$), 6.78 and 6.63 (two s, $1 \mathrm{H}, \mathrm{C} 6-\mathrm{H}), 5.29(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 4.71-$ 4.69 and $4.55-4.52$ (two $\mathrm{m}, 1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$), $3.95-3.86$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$ and $\mathrm{C} 2-\mathrm{H}$), 3.26-3.15 and 2.80 (two $\mathrm{m}, 2 \mathrm{H}, \mathrm{C} 1-\mathrm{H}_{2}$), $2.52-2.05(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{C} 3-\mathrm{H}_{2}$), 1.96 and 1.95 (two $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$); IR (film) $\nu_{\max } 3318,2923$, $1620,1584,1446,1413,1391,1261,1077 \mathrm{~cm}^{-1}$.
Aqueous Solvolysis Rates of \boldsymbol{N}-BOC-CBQ (9) and CBQ (10). Samples of $9(100 \mu \mathrm{~g})$ and $10(100 \mu \mathrm{~g})$ were dissolved in $\mathrm{CH}_{3} \mathrm{OH}(1.5$ mL) and the solutions mixed with aqueous buffer ($\mathrm{pH} 3,1.5 \mathrm{~mL}$). The buffer contained $4: 1: 20(\mathrm{v}: \mathrm{v}: \mathrm{v}) 0.1 \mathrm{M}$ citric acid, $0.2 \mathrm{M} \mathrm{Na}_{2} \mathrm{HPO}_{4}$, and
$\mathrm{H}_{2} \mathrm{O}$, respectively. Similarly, a solution of $9(100 \mu \mathrm{~g})$ in $\mathrm{CH}_{3} \mathrm{OH}(1.5$ mL) was mixed with deionized $\mathrm{H}_{2} \mathrm{O}(\mathrm{pH} 7,1.5 \mathrm{~mL})$. The UV spectra of the solutions were measured immediately after mixing with the aqueous solutions against a blank containing $\mathrm{CH}_{3} \mathrm{OH}(1.5 \mathrm{~mL})$ and the appropriate aqueous solution (1.5 mL). The blank and the solvolysis reaction solutions were carefully stoppered, protected from light, and allowed to stand at $25^{\circ} \mathrm{C}$. For 9 at pH 3 , the UV spectrum was taken 10 times during the first hour, 10 times during the following 6 h , and then twice a day. The reaction was monitored until no further change was observed. The decrease of the absorbance at 318 nm was recorded. The solvolysis rate constant was calculated from the least squares treatment $(r=0.993)$ of the slope of a plot of time versus $\ln \left[\left(A-A_{\infty}\right) /\left(A_{\circ}-A_{\infty}\right)\right] ; k=9.07 \times 10^{-5} \mathrm{~s}^{-1}, t_{1 / 2}=2.1 \mathrm{~h}$. For 9 at pH 7 , the UV spectrum was monitored daily for the first 3 days and then weekly during a period of 4 months. The rate was computed from the least squares treatment $(r=0.990)$ of the slope of the same plot as above; $k=3.54 \times 10^{-7} \mathrm{~s}^{-1}, t_{1 / 2}=544 \mathrm{~h}$. For 10 , the UV spectrum was monitored 9 times the first day, twice a day for the next three days, and daily for an additional week. The decrease of the absorption at 343 nm was recorded. The solvolysis rate constant was calculated for the least squares treatment $(r=0.999)$ of the same plot as above; $k=2.11 \times 10^{-6} \mathrm{~s}^{-1}, t_{1 / 2}=91.2 \mathrm{~h}$.

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (CA41986 and 55276) and the award of a Ligue Nationale Contre Le Cancer fellowship to Philippe Mésini (1992-93). We wish to thank Dr. Raj Chadha for the X-ray structure determination of 9 and Dr. W. Wrasidlo and Robert Merlock for the in vitro cytotoxic assay results.

Supplementary Material Available: Full experimental details for the preparation and characterization of 12-17, details of the X-ray structure determination of 9 , and tables of data used to assemble Figure 5 (26 pages); observed and calculated structure factors for 9 (4 pages). This material is contained in many libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, November 15, 1994.
 (1) Chidester, C. G.; Krueger, W. C.; Mizsak, S. A.; Duchamp, D. J.; Martin, D. G. J. Am. Chem. Soc. 1981, 103, 7629.
 (2) Ichimura, M.; Ogawa, T.; Takahashi, K.; Kobayashi, E.; Kawamoto, I.; Yasuzawa, T.; Takahashi, I.; Nakano, H. J. Antibiot. 1990, 43, 1037. Ichimura, M.; Ogawa, T.; Katsumata, S.; Takahashi, K.; Takahashi, I.; Nakano, H. J. Antibiot. 1991, 44, 1045.
 (3) Takahashi, I.; Takahashi, K.; Ichimura, M.; Morimoto, M.; Asano, K.; Kawamoto, I.; Tomita, F.; Nakano, H. J. Antibiot. 1988, 41, 1915. Yasuzawa, T.; Iida, T.; Muroi, K.; Ichimura, M.; Takahashi, K.; Sano, H. Chem. Pharm. Bull. 1988, 36, 3728.
 (4) Ichimura, M.; Muroi, K.; Asano, K.; Kawamoto, I.; Tomita, F.; Morimoto, M.; Nakano, H. J. Antibiot. 1988, 41, 1285.
 (5) Ogawa, T.; Ichimura, M.; Katsumata, S.; Morimoto, M.; Takahashi, K. J. Antibiot. 1989, 42, 1299.
 (6) Ohba, K.; Watabe, H.; Sasaki, T.; Takeuchi, Y.; Kodama, Y.; Nakazawa, T.; Yamamoto, H.; Shomura, T.; Sezaki, M.; Kondo, S. J. Antibiot. 1988, 41, 1515. Ishii, S.; Nagasawa, M.; Kariya, Y.; Yamamoto, H.; Inouye, S.; Kondo, S. J. Antibiot. 1989, 42, 1713.

[^1]: (11) Hurley, L. H.; Reynolds, V. L.; Swenson, D. H.; Petzold, G. L.; Scahill, T. A. Science 1984, 226, 843. Reynolds, V. L.; Molineux, I, J.; Kaplan, D. J.; Swendson, D. H.; Hurley, L. H. Biochemistry 1985, 24, 6228. Hurley, L. H.; Lee, C.-S.; McGovren, J. P.; Warpehoski, M. A.; Mitchell, M. A.; Kelly, R. C.; Aristoff, P. A. Biochemistry 1988, 27, 3886. Scahill, T. A.; Jensen, R. M.; Swenson, D. H.; Hatzenbuhler, N. T.; Petzold, G.; Wierenga, W.; Brahme, N. D. Biochemistry 1990, 29, 2852. Hurley, L. H.; Warpehoski, M. A.; Lee, C.-S.; McGovren, J. P.; Scahill, T. A.; Kelly, R. C.; Mitchell, M. A.; Wicnienski, N. A.; Gebhard, I.; Johnson, P. D.; Bradford, V. S. J. Am. Chem. Soc. 1990, 112, 4633.
 (12) Boger, D. L.; Johnson, D. S.; Yun, W.; Tarby, C. M. Bioorg. Med. Chem. 1994, 2, 115. Boger, D. L.; Coleman, R. S.; Invergo, B. J.; Sakya, S. M.; Ishizaki, T.; Munk, S. A.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C. J. Am. Chem. Soc. 1990, 112, 4623. Boger, D. L.; Coleman, R. S. J. Am. Chem. Soc. 1988, 110, 4796 and 1321.
 (13) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Kitos, P. A.; Suntomwat, O. J. Org. Chem. 1990, 55, 4499. Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1990, 112, 8961. Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 6645. Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1993, 115 , 9872.
 (14) Boger, D. L.; Johnson, D. S.; Yun, W. J. Am. Chem. Soc. 1994, 116, 1635. Synthesis: Boger, D. L.; Machiya, K.; Hertzog, D. L.; Kitos, P. A.; Holmes, D. J. Am. Chem. Soc. 1993, 115, 9025 . Boger, D. L.; Machiya, K. J. Am. Chem. Soc. 1992, 114, 10056.
 (15) Boger, D. L.; Yun, W.; Terashima, S.; Fukuda, Y.; Nakatani, K.; Kitos, P. A.; Jin, Q. BioMed. Chem. Lett. 1992, 2, 759.
 (16) Sugiyama, H.; Hosoda, M.; Saito, I.; Asai, A.; Saito, H. Tetrahedron Lett. 1990, 31, 7197. Lin, C. H.; Patel, D. J. J. Am. Chem. Soc. 1992, 114, 10658. Sugiyama, H.; Ohmori, K.; Chan, K. L.; Hosoda, M.; Asai, A.; Saito, H.; Saito, I. Tetrahedron Lett. 1993, 34, 2179. Yamamoto, K.; Sugiyama, H.; Kawanishi, S. Biochemistry 1993, 32, 1059.
 (17) Boger, D. L.; Johnson, D. S; Wrasidlo, W. Bioorg. Med. Chem. Lett. 1994, 4, 631.

[^2]: (18) CPI analogs: Weirenga, W.; Bhuyan, B. K.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Swenson, D. H.; Warpehoski, M. A. Adv. Enzyme Regul. 1986, 25, 141. Warpehoski, M. A.; Gebhard, I.; Kelly, R. C.; Krueger, W. C.; Li, L. H.; McGovren, J. P.; Prairie, M. D.; Wicnienski, N.; Wierenga, W. J. Med. Chem. 1988, 31, 590.
 (19) CI-based analogs: Boger, D. L.; Zarrinmayeh, H.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1431. Boger, D. L.; Munk, S. A.; Zarrinmayeh, H.; Ishizaki, T.; Haught, J.; Bina, M. Tetrahedron 1991, 47, 2661. Boger, D. L.; Munk, S. A.; Zarrinmayeh, H. J. Am. Chem. Soc. 1991, 113, 3980. Boger, D. L.; Wysocki, R. J., Jr. J. Org. Chem. 1989, 54, 1238. Boger, D. L.; Wysocki, R. J., Jr.; Ishizaki, T. J. Am. Chem. Soc. 1990, 112, 5230. Drost, K. J.; Jones, R. J.; Cava, M. P. J. Org. Chem. 1989, 54, 5985. Tidwell, J. H.; Buchwald, S. L. J. Org. Chem. 1992, 57, 6380. Wang, Y.; Gupta, R.; Huang, L.; Lown, J. W. J. Med. Chem. 1993, 36, 4172. Sundberg, R. J.; Baxter, E. W. Tetrahedron Lett. 1986, 27, 2687. Tietz, L. F.; Grote, T. Chem. Ber. 1993, 126, 2733.
 (20) CBI-based analogs: (a) Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 7996. (b) Boger, D. L.; Munk, S. A. J. Am. Chem. Soc. 1992, 114, 5487. (c) Boger, D. L.; Munk, S. A.; Ishizaki, T. J. Am. Chem. Soc. 1991, 113, 2779. (d) Boger, D. L.; Ishizaki, T.; Wysocki, R. J., Jr.; Munk, S. A.; Kitos, P. A.; Suntornwat, O. J. Am. Chem. Soc. 1989, 111, 6461. (e) Boger D. L.; Ishizaki, T.; Kitos, P. A.; Suntornwat, O. J. Org. Chem. 1990 , 55, 5823. (f) Boger, D. L.; Ishizaki, T. Tetrahedron Lett. 1990, 31, 793. (g) Boger, D. L.; Ishizaki, T.; Zarrinmayeh, H.; Kitos, P. A.; Suntornwat, O. BioMed. Chem. Lett. 1991, I, 55. (h) Boger, D. L.; Ishizaki, T.; Sakya, S. M.; Munk, S. A.; Kitos, P. A.; Jin, Q.; Besterman, J. M. BioMed. Chem. Lett. 1991, 1, 115. (i) Boger, D. L.; Yun, W. J. Am. Chem. Soc. 1994, 116, 5523. (j) Boger, D. L.; Yun, W.; Teegarden, B. R. J. Org. Chem. 1992, 57, 2873. (k) Drost, K. J.; Cava, M. P. J. Org. Chem. 1991, 56, 2240. (1) Aristoff, P. A.; Johnson, P. D.; Sun, D. J. Med. Chem. 1993, 36, 1956.
 (21) CFI-based analogs: Mohamadi, F.; Spees, M. M.; Staten, G. S.; Marder, P.; Kipka, J. K.; Johnson, D. A.; Boger, D. L.; Zarrinmayeh, H. J. Med. Chem. 1994, 37, 232.
 (22) C2BI-based analogs: (a) Boger, D. L.; Palanki, M. S. S. J. Am. Chem. Soc. 1992, 114, 9318. Boger, D. L.; Johnson, D. S.; Palanki, M. S. S.; Kitos, P. A.; Chang, J.; Dowell, P. Bioorg. Med. Chem. 1993, 1, 27. Others: (b) Boger, D. L.; Nishi, T.; Teegarden, B. R. J. Org. Chem. 1994, 59, 4943.
 (23) Boger, D. L.; Mesini, P.; Tarby, C. E. J. Am. Chem. Soc. 1994, 116, 6461 .
 (24) Boger, D. L.; Sakya, S. M. J. Org. Chem. 1992, 57, 1277. Boger, D. L.; Invergo, B. J.; Coleman, R. S.; Zarrinmayeh, H.; Kitos, P. A.; Thompson, S. C.; Leong, T.; McLaughlin, L. W. Chem.-Biol. Interact. 1990, 73, 29.
 (25) Boger, D. L.; Johnson, D. S. J. Am. Chem. Soc., in press.

[^3]: (26) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org. Chem. 1978, 43, 2480.
 (27) Through implementation of a 6-exo-dig aryl radical-alkyne cyclization/hydroboration sequence, the product could provide an alternative route to 17.
 (28) Ozonolysis of the product would provide an alternative route to 14.
 (29) Schlude, H. Tetrahedron 1975, 31, 89. Anderson, C. L.; Soderquist, J. A.; Kabalka, G. W. Tetrahedron Lett. 1992, 33, 6915.
 (30) Corey, E. J.; Arai, Y.; Mioskowski, C. J. Am. Chem. Soc. 1979, 101, 6748.

[^4]: (34) Natural (-)-CBI-TMI exhibited a DNA alkylation selectivity identical to that of natural (+)-duocarmycin A and SA while ent- $(+)$-CBQTMI exhibited a DNA alkylation selectivity identical to that of ent-(-)duocarmcyin SA.

[^5]: (35) Boger, D. L.; Coleman, R. S.; Invergo, B. J. J. Org. Chem. 1987,

[^6]: (36) Warpehoski, M. A.; Harper, D. E. J. Am. Chem. Soc. 1994, 116, 7573.
 (37) The author has deposited the atomic coordinates for this structure with the Cambridge Crystallographic Data Centre. The coordinates may be obtained upon request from the Director, Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, U.K.
 (38) Walsh, A. D. Nature (London) 1947, 159, 712. Sugden, T. M. Nature (London) 1947, 160, 367. Coulson, C. A.; Moffitt, W. E. J. Chem. Phys. 1947, 15, 151. Coulson, C. A.; Moffitt, W. E. Philos. Mag. 1949, 40, 1.
 (39) Hoffmann, R.; Davidson, R. B. J. Am. Chem. Soc. 1971, 93, 5699. Clark, T.; Spitznagel, G. W.; Klose, R.; Schleyer, P. v. R. J. Am. Chem. Soc. 1984, 106, 4412.

[^7]: (40) Baird, R.; Winstein, S. J. Am. Chem. Soc. 1963, 85, 567.
 (41) Danishefsky, S. Acc. Chem. Res. 1979, 12, 66. de Meijer, A. Angew. Chem., Int. Ed. Engl. 1979, 18, 809.

